Spaces:
Running
Running
File size: 19,888 Bytes
616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 6d1a894 8c25077 f623175 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 f623175 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 8c25077 616e7e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
'''
* The Recognize Anything Model (RAM) & Tag2Text Model
* Written by Xinyu Huang
'''
import numpy as np
import json
import torch
import warnings
from torch import nn
from models.bert import BertConfig, BertModel, BertLMHeadModel
from models.vit import VisionTransformer
from models.swin_transformer import SwinTransformer
from data.ram_tag_list_threshold import ram_class_threshold
from models.utils import *
warnings.filterwarnings("ignore")
class RAM(nn.Module):
def __init__(self,
med_config=f'{CONFIG_PATH}/configs/med_config.json',
image_size=384,
vit='base',
vit_grad_ckpt=False,
vit_ckpt_layer=0,
prompt='a picture of ',
threshold=0.68,
delete_tag_index=[],
tag_list=f'{CONFIG_PATH}/data/ram_tag_list.txt',
tag_list_chinese=f'{CONFIG_PATH}/data/ram_tag_list_chinese.txt'):
r""" The Recognize Anything Model (RAM) inference module.
RAM is a strong image tagging model, which can recognize any common category with high accuracy.
Described in the paper " Recognize Anything: A Strong Image Tagging Model" https://recognize-anything.github.io/
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
threshold (int): tagging threshold
delete_tag_index (list): delete some tags that may disturb captioning
"""
super().__init__()
# create image encoder
if vit == 'swin_b':
if image_size == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
elif image_size == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
vision_config = read_json(vision_config_path)
assert image_size == vision_config['image_res']
# assert config['patch_size'] == 32
vision_width = vision_config['vision_width']
self.visual_encoder = SwinTransformer(
img_size=vision_config['image_res'],
patch_size=4,
in_chans=3,
embed_dim=vision_config['embed_dim'],
depths=vision_config['depths'],
num_heads=vision_config['num_heads'],
window_size=vision_config['window_size'],
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False)
elif vit == 'swin_l':
if image_size == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
elif image_size == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
vision_config = read_json(vision_config_path)
assert image_size == vision_config['image_res']
# assert config['patch_size'] == 32
vision_width = vision_config['vision_width']
self.visual_encoder = SwinTransformer(
img_size=vision_config['image_res'],
patch_size=4,
in_chans=3,
embed_dim=vision_config['embed_dim'],
depths=vision_config['depths'],
num_heads=vision_config['num_heads'],
window_size=vision_config['window_size'],
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False)
else:
self.visual_encoder, vision_width = create_vit(
vit, image_size, vit_grad_ckpt, vit_ckpt_layer)
# create tokenzier
self.tokenizer = init_tokenizer()
# Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
# create image-tag interaction encoder
encoder_config = BertConfig.from_json_file(med_config)
encoder_config.encoder_width = 512
self.tag_encoder = BertModel(config=encoder_config,
add_pooling_layer=False)
# create image-tag-text decoder
decoder_config = BertConfig.from_json_file(med_config)
self.text_decoder = BertLMHeadModel(config=decoder_config)
self.delete_tag_index = delete_tag_index
self.prompt = prompt
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
# load tag list
self.tag_list = self.load_tag_list(tag_list)
self.tag_list_chinese = self.load_tag_list(tag_list_chinese)
# create image-tag recognition decoder
self.threshold = threshold
self.num_class = len(self.tag_list)
q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
q2l_config.encoder_width = 512
self.tagging_head = BertModel(config=q2l_config,
add_pooling_layer=False)
self.tagging_head.resize_token_embeddings(len(self.tokenizer))
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
if q2l_config.hidden_size != 512:
self.wordvec_proj = nn.Linear(512, q2l_config.hidden_size)
else:
self.wordvec_proj = nn.Identity()
self.fc = nn.Linear(q2l_config.hidden_size, 1)
self.del_selfattention()
# share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
' ')
self.image_proj = nn.Linear(vision_width, 512)
self.label_embed = nn.Parameter(torch.load('data/textual_label_embedding.pth',map_location='cpu').float())
# adjust thresholds for some tags
self.class_threshold = torch.ones(self.num_class) * self.threshold
for key,value in enumerate(ram_class_threshold):
self.class_threshold[key] = value
def load_tag_list(self, tag_list_file):
with open(tag_list_file, 'r') as f:
tag_list = f.read().splitlines()
tag_list = np.array(tag_list)
return tag_list
# delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
def del_selfattention(self):
del self.tagging_head.embeddings
for layer in self.tagging_head.encoder.layer:
del layer.attention
def generate_tag(self,
image,
threshold=0.68,
tag_input=None,
):
label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed))
image_embeds = self.image_proj(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
# recognized image tags using image-tag recogntiion decoder
image_cls_embeds = image_embeds[:, 0, :]
image_spatial_embeds = image_embeds[:, 1:, :]
bs = image_spatial_embeds.shape[0]
label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1)
tagging_embed = self.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
logits = self.fc(tagging_embed[0]).squeeze(-1)
targets = torch.where(
torch.sigmoid(logits) > self.class_threshold.to(image.device),
torch.tensor(1.0).to(image.device),
torch.zeros(self.num_class).to(image.device))
tag = targets.cpu().numpy()
tag[:,self.delete_tag_index] = 0
tag_output = []
tag_output_chinese = []
for b in range(bs):
index = np.argwhere(tag[b] == 1)
token = self.tag_list[index].squeeze(axis=1)
tag_output.append(' | '.join(token))
token_chinese = self.tag_list_chinese[index].squeeze(axis=1)
tag_output_chinese.append(' | '.join(token_chinese))
return tag_output, tag_output_chinese
class Tag2Text_Caption(nn.Module):
def __init__(self,
med_config=f'{CONFIG_PATH}/configs/med_config.json',
image_size=384,
vit='base',
vit_grad_ckpt=False,
vit_ckpt_layer=0,
prompt='a picture of ',
threshold=0.68,
delete_tag_index=[127,2961, 3351, 3265, 3338, 3355, 3359],
tag_list=f'{CONFIG_PATH}/data/tag_list.txt'):
r""" Tag2Text inference module, both captioning and tagging are included.
Tag2Text is an efficient and controllable vision-language pre-training framework.
Described in the paper "Tag2Text: Guiding Vision-Language Model via Image Tagging" https://arxiv.org/abs/2303.05657
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
threshold (int): tagging threshold
delete_tag_index (list): delete some tags that may disturb captioning
"""
super().__init__()
# create image encoder
if vit == 'swin_b':
if image_size == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
elif image_size == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
vision_config = read_json(vision_config_path)
assert image_size == vision_config['image_res']
# assert config['patch_size'] == 32
vision_width = vision_config['vision_width']
self.visual_encoder = SwinTransformer(
img_size=vision_config['image_res'],
patch_size=4,
in_chans=3,
embed_dim=vision_config['embed_dim'],
depths=vision_config['depths'],
num_heads=vision_config['num_heads'],
window_size=vision_config['window_size'],
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False)
else:
self.visual_encoder, vision_width = create_vit(
vit, image_size, vit_grad_ckpt, vit_ckpt_layer)
# create tokenzier
self.tokenizer = init_tokenizer()
# Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
# create image-tag interaction encoder
encoder_config = BertConfig.from_json_file(med_config)
encoder_config.encoder_width = vision_width
self.tag_encoder = BertModel(config=encoder_config,
add_pooling_layer=False)
# create image-tag-text decoder
decoder_config = BertConfig.from_json_file(med_config)
self.text_decoder = BertLMHeadModel(config=decoder_config)
# delete some tags that may disturb captioning
# 127: "quarter"; 2961: "back"; 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one"
self.delete_tag_index = delete_tag_index
self.prompt = prompt
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
# load tag list
self.tag_list = self.load_tag_list(tag_list)
# create image-tag recognition decoder
self.threshold = threshold
self.num_class = len(self.tag_list)
q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
q2l_config.encoder_width = vision_width
self.tagging_head = BertModel(config=q2l_config,
add_pooling_layer=False)
self.tagging_head.resize_token_embeddings(len(self.tokenizer))
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
self.fc = GroupWiseLinear(self.num_class,
q2l_config.hidden_size,
bias=True)
self.del_selfattention()
# share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
' ')
# adjust thresholds for some tags
# default threshold: 0.68
# 2701: "person"; 2828: "man"; 1167: "woman";
tag_thrshold = {2701:0.7, 2828: 0.7, 1167: 0.7}
self.class_threshold = torch.ones(self.num_class) * self.threshold
for key,value in tag_thrshold.items():
self.class_threshold[key] = value
def load_tag_list(self, tag_list_file):
with open(tag_list_file, 'r') as f:
tag_list = f.read().splitlines()
tag_list = np.array(tag_list)
return tag_list
# delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
def del_selfattention(self):
del self.tagging_head.embeddings
for layer in self.tagging_head.encoder.layer:
del layer.attention
def generate(self,
image,
sample=False,
num_beams=3,
max_length=30,
min_length=10,
top_p=0.9,
repetition_penalty=1.0,
tag_input=None,
return_tag_predict=False):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
# if not user specified tags, recognized image tags using image-tag recogntiion decoder
if tag_input == None:
image_cls_embeds = image_embeds[:, 0, :]
image_spatial_embeds = image_embeds[:, 1:, :]
bs = image_spatial_embeds.shape[0]
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
tagging_embed = self.tagging_head(
encoder_embeds=label_embed,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=False,
mode='tagging',
)
logits = self.fc(tagging_embed[0])
targets = torch.where(
torch.sigmoid(logits) > self.class_threshold,
torch.tensor(1.0).to(image.device),
torch.zeros(self.num_class).to(image.device))
tag = targets.cpu().numpy()
# delete some tags that may disturb captioning
tag[:, self.delete_tag_index] = 0
tag_input = []
for b in range(bs):
index = np.argwhere(tag[b] == 1)
token = self.tag_list[index].squeeze(axis=1)
tag_input.append(' | '.join(token))
tag_output = tag_input
# beam search for text generation(default)
if not sample:
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
tag_input_temp = []
for tag in tag_input:
for i in range(num_beams):
tag_input_temp.append(tag)
tag_input = tag_input_temp
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
# tokenizer input tags
tag_input_tokenzier = self.tokenizer(tag_input,
padding='max_length',
truncation=True,
max_length=40,
return_tensors="pt").to(
image.device)
encoder_input_ids = tag_input_tokenzier.input_ids
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
# put input tag into image-tag interaction encoder to interact with image embeddings
output_tagembedding = self.tag_encoder(
encoder_input_ids,
attention_mask=tag_input_tokenzier.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
# prompt trick for better captioning, followed BLIP
prompt = [self.prompt] * image.size(0)
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(
image.device)
input_ids[:, 0] = self.tokenizer.bos_token_id
input_ids = input_ids[:, :-1]
if sample:
# nucleus sampling
model_kwargs = {
"encoder_hidden_states": output_tagembedding.last_hidden_state,
"encoder_attention_mask": None
}
outputs = self.text_decoder.generate(
input_ids=input_ids,
max_length=max_length,
min_length=min_length,
do_sample=True,
top_p=top_p,
num_return_sequences=1,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=1.1,
**model_kwargs)
else:
# beam search (default)
model_kwargs = {
"encoder_hidden_states": output_tagembedding.last_hidden_state,
"encoder_attention_mask": None
}
outputs = self.text_decoder.generate(
input_ids=input_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
captions = []
for output in outputs:
caption = self.tokenizer.decode(output, skip_special_tokens=True)
captions.append(caption[len(self.prompt):])
if return_tag_predict == True:
return captions, tag_output
return captions
# load Tag2Text pretrained model parameters
def tag2text_caption(pretrained='', **kwargs):
model = Tag2Text_Caption(**kwargs)
if pretrained:
if kwargs['vit'] == 'swin_b':
model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
else:
model, msg = load_checkpoint(model, pretrained)
print('vit:', kwargs['vit'])
print('msg', msg)
return model
# load RAM pretrained model parameters
def ram(pretrained='', **kwargs):
model = RAM(**kwargs)
if pretrained:
if kwargs['vit'] == 'swin_b':
model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
elif kwargs['vit'] == 'swin_l':
model, msg = load_checkpoint_swinlarge(model, pretrained, kwargs)
else:
model, msg = load_checkpoint(model, pretrained)
print('vit:', kwargs['vit'])
print('msg', msg)
return model
|