File size: 19,888 Bytes
616e7e7
8c25077
616e7e7
 
8c25077
 
 
616e7e7
 
 
8c25077
 
 
 
616e7e7
8c25077
6d1a894
8c25077
f623175
8c25077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616e7e7
 
 
 
 
8c25077
 
 
616e7e7
 
8c25077
 
616e7e7
8c25077
616e7e7
8c25077
616e7e7
 
 
 
 
8c25077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616e7e7
8c25077
 
616e7e7
8c25077
 
616e7e7
8c25077
 
 
 
 
 
616e7e7
8c25077
616e7e7
8c25077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616e7e7
8c25077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616e7e7
 
8c25077
 
 
 
 
 
 
 
 
 
616e7e7
8c25077
616e7e7
8c25077
 
616e7e7
8c25077
 
 
 
616e7e7
8c25077
 
 
616e7e7
8c25077
 
 
616e7e7
 
8c25077
 
 
616e7e7
8c25077
 
 
 
f623175
 
 
8c25077
 
 
 
 
 
 
 
616e7e7
8c25077
 
616e7e7
8c25077
 
 
 
 
 
 
 
 
 
 
 
616e7e7
8c25077
 
616e7e7
8c25077
616e7e7
8c25077
 
616e7e7
 
8c25077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616e7e7
 
8c25077
 
 
 
616e7e7
 
 
8c25077
 
 
 
 
 
616e7e7
8c25077
616e7e7
 
 
 
 
 
8c25077
 
616e7e7
8c25077
 
 
 
 
 
 
616e7e7
8c25077
 
 
 
 
 
 
 
 
 
 
 
616e7e7
8c25077
 
 
 
616e7e7
 
8c25077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616e7e7
8c25077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616e7e7
8c25077
616e7e7
 
8c25077
616e7e7
 
 
8c25077
 
616e7e7
 
 
8c25077
616e7e7
8c25077
 
 
 
616e7e7
 
8c25077
 
 
 
 
 
 
 
 
 
 
 
 
616e7e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
'''
 * The Recognize Anything Model (RAM) & Tag2Text Model
 * Written by Xinyu Huang
'''
import numpy as np
import json
import torch
import warnings

from torch import nn
from models.bert import BertConfig, BertModel, BertLMHeadModel
from models.vit import VisionTransformer
from models.swin_transformer import SwinTransformer
from data.ram_tag_list_threshold import ram_class_threshold

from models.utils import *

warnings.filterwarnings("ignore")

class RAM(nn.Module):
    def __init__(self,
                 med_config=f'{CONFIG_PATH}/configs/med_config.json',
                 image_size=384,
                 vit='base',
                 vit_grad_ckpt=False,
                 vit_ckpt_layer=0,
                 prompt='a picture of ',
                 threshold=0.68,
                 delete_tag_index=[],
                 tag_list=f'{CONFIG_PATH}/data/ram_tag_list.txt',
                 tag_list_chinese=f'{CONFIG_PATH}/data/ram_tag_list_chinese.txt'):
        r""" The Recognize Anything Model (RAM) inference module.
        RAM is a strong image tagging model, which can recognize any common category with high accuracy.
        Described in the paper " Recognize Anything: A Strong Image Tagging Model" https://recognize-anything.github.io/
        
        Args:
            med_config (str): path for the mixture of encoder-decoder model's configuration file
            image_size (int): input image size
            vit (str): model size of vision transformer
            threshold (int): tagging threshold
            delete_tag_index (list): delete some tags that may disturb captioning
        """
        super().__init__()

        # create image encoder
        if vit == 'swin_b':
            if image_size == 224:
                vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
            elif image_size == 384:
                vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
            vision_config = read_json(vision_config_path)
            assert image_size == vision_config['image_res']
            # assert config['patch_size'] == 32
            vision_width = vision_config['vision_width']

            self.visual_encoder = SwinTransformer(
                img_size=vision_config['image_res'],
                patch_size=4,
                in_chans=3,
                embed_dim=vision_config['embed_dim'],
                depths=vision_config['depths'],
                num_heads=vision_config['num_heads'],
                window_size=vision_config['window_size'],
                mlp_ratio=4.,
                qkv_bias=True,
                drop_rate=0.0,
                drop_path_rate=0.1,
                ape=False,
                patch_norm=True,
                use_checkpoint=False)

        elif vit == 'swin_l':
            if image_size == 224:
                vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
            elif image_size == 384:
                vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
            vision_config = read_json(vision_config_path)
            assert image_size == vision_config['image_res']
            # assert config['patch_size'] == 32
            vision_width = vision_config['vision_width']

            self.visual_encoder = SwinTransformer(
                img_size=vision_config['image_res'],
                patch_size=4,
                in_chans=3,
                embed_dim=vision_config['embed_dim'],
                depths=vision_config['depths'],
                num_heads=vision_config['num_heads'],
                window_size=vision_config['window_size'],
                mlp_ratio=4.,
                qkv_bias=True,
                drop_rate=0.0,
                drop_path_rate=0.1,
                ape=False,
                patch_norm=True,
                use_checkpoint=False)

        else:
            self.visual_encoder, vision_width = create_vit(
                vit, image_size, vit_grad_ckpt, vit_ckpt_layer)

        # create tokenzier
        self.tokenizer = init_tokenizer()

        # Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
        # create image-tag interaction encoder
        encoder_config = BertConfig.from_json_file(med_config)
        encoder_config.encoder_width = 512
        self.tag_encoder = BertModel(config=encoder_config,
                                     add_pooling_layer=False)

        # create image-tag-text decoder
        decoder_config = BertConfig.from_json_file(med_config)
        self.text_decoder = BertLMHeadModel(config=decoder_config)

        self.delete_tag_index = delete_tag_index
        self.prompt = prompt
        self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1

        # load tag list
        self.tag_list = self.load_tag_list(tag_list)
        self.tag_list_chinese = self.load_tag_list(tag_list_chinese)

        # create image-tag recognition decoder
        self.threshold = threshold
        self.num_class = len(self.tag_list)
        q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
        q2l_config.encoder_width = 512
        self.tagging_head = BertModel(config=q2l_config,
                                      add_pooling_layer=False)
        self.tagging_head.resize_token_embeddings(len(self.tokenizer))
        self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)

        if q2l_config.hidden_size != 512:
            self.wordvec_proj = nn.Linear(512, q2l_config.hidden_size)
        else:
            self.wordvec_proj = nn.Identity()

        self.fc = nn.Linear(q2l_config.hidden_size, 1)

        self.del_selfattention()

        # share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
        tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
                                    ' ')
        self.image_proj = nn.Linear(vision_width, 512)
        self.label_embed = nn.Parameter(torch.load('data/textual_label_embedding.pth',map_location='cpu').float())

        # adjust thresholds for some tags
        self.class_threshold = torch.ones(self.num_class) * self.threshold
        for key,value in enumerate(ram_class_threshold):
            self.class_threshold[key] = value

    def load_tag_list(self, tag_list_file):
        with open(tag_list_file, 'r') as f:
            tag_list = f.read().splitlines()
        tag_list = np.array(tag_list)
        return tag_list

    # delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
    def del_selfattention(self):
        del self.tagging_head.embeddings
        for layer in self.tagging_head.encoder.layer:
            del layer.attention

    def generate_tag(self,
                 image,
                 threshold=0.68,
                 tag_input=None,
                 ):
            
        label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed))

        image_embeds = self.image_proj(self.visual_encoder(image))
        image_atts = torch.ones(image_embeds.size()[:-1],
                                dtype=torch.long).to(image.device)

        # recognized image tags using image-tag recogntiion decoder
        image_cls_embeds = image_embeds[:, 0, :]
        image_spatial_embeds = image_embeds[:, 1:, :]

        bs = image_spatial_embeds.shape[0]
        label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1)
        tagging_embed = self.tagging_head(
            encoder_embeds=label_embed,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            return_dict=False,
            mode='tagging',
        )

        logits = self.fc(tagging_embed[0]).squeeze(-1)

        targets = torch.where(
            torch.sigmoid(logits) > self.class_threshold.to(image.device),
            torch.tensor(1.0).to(image.device),
            torch.zeros(self.num_class).to(image.device))

        tag = targets.cpu().numpy()
        tag[:,self.delete_tag_index] = 0
        tag_output = []
        tag_output_chinese = []
        for b in range(bs):
            index = np.argwhere(tag[b] == 1)
            token = self.tag_list[index].squeeze(axis=1)
            tag_output.append(' | '.join(token))
            token_chinese = self.tag_list_chinese[index].squeeze(axis=1)
            tag_output_chinese.append(' | '.join(token_chinese))


        return tag_output, tag_output_chinese


class Tag2Text_Caption(nn.Module):

    def __init__(self,
                 med_config=f'{CONFIG_PATH}/configs/med_config.json',
                 image_size=384,
                 vit='base',
                 vit_grad_ckpt=False,
                 vit_ckpt_layer=0,
                 prompt='a picture of ',
                 threshold=0.68,
                 delete_tag_index=[127,2961, 3351, 3265, 3338, 3355, 3359],
                 tag_list=f'{CONFIG_PATH}/data/tag_list.txt'):
        r""" Tag2Text inference module, both captioning and tagging are included.
        Tag2Text is an efficient and controllable vision-language pre-training framework.
        Described in the paper "Tag2Text: Guiding Vision-Language Model via Image Tagging" https://arxiv.org/abs/2303.05657

        Args:
            med_config (str): path for the mixture of encoder-decoder model's configuration file
            image_size (int): input image size
            vit (str): model size of vision transformer
            threshold (int): tagging threshold
            delete_tag_index (list): delete some tags that may disturb captioning
        """
        super().__init__()

        # create image encoder
        if vit == 'swin_b':
            if image_size == 224:
                vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
            elif image_size == 384:
                vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
            vision_config = read_json(vision_config_path)
            assert image_size == vision_config['image_res']
            # assert config['patch_size'] == 32
            vision_width = vision_config['vision_width']

            self.visual_encoder = SwinTransformer(
                img_size=vision_config['image_res'],
                patch_size=4,
                in_chans=3,
                embed_dim=vision_config['embed_dim'],
                depths=vision_config['depths'],
                num_heads=vision_config['num_heads'],
                window_size=vision_config['window_size'],
                mlp_ratio=4.,
                qkv_bias=True,
                drop_rate=0.0,
                drop_path_rate=0.1,
                ape=False,
                patch_norm=True,
                use_checkpoint=False)

        else:
            self.visual_encoder, vision_width = create_vit(
                vit, image_size, vit_grad_ckpt, vit_ckpt_layer)

        # create tokenzier
        self.tokenizer = init_tokenizer()

        # Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
        # create image-tag interaction encoder
        encoder_config = BertConfig.from_json_file(med_config)
        encoder_config.encoder_width = vision_width
        self.tag_encoder = BertModel(config=encoder_config,
                                     add_pooling_layer=False)

        # create image-tag-text decoder
        decoder_config = BertConfig.from_json_file(med_config)
        self.text_decoder = BertLMHeadModel(config=decoder_config)

        # delete some tags that may disturb captioning
        # 127: "quarter"; 2961: "back"; 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one"
        self.delete_tag_index = delete_tag_index
        self.prompt = prompt
        self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1

        # load tag list
        self.tag_list = self.load_tag_list(tag_list)

        # create image-tag recognition decoder
        self.threshold = threshold
        self.num_class = len(self.tag_list)
        q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
        q2l_config.encoder_width = vision_width
        self.tagging_head = BertModel(config=q2l_config,
                                      add_pooling_layer=False)
        self.tagging_head.resize_token_embeddings(len(self.tokenizer))
        self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
        self.fc = GroupWiseLinear(self.num_class,
                                  q2l_config.hidden_size,
                                  bias=True)
        self.del_selfattention()

        # share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
        tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
                                    ' ')

        # adjust thresholds for some tags
        # default threshold: 0.68
        # 2701: "person"; 2828: "man"; 1167: "woman"; 
        tag_thrshold = {2701:0.7, 2828: 0.7, 1167: 0.7}
        self.class_threshold = torch.ones(self.num_class) * self.threshold
        for key,value in tag_thrshold.items():
            self.class_threshold[key] = value

    def load_tag_list(self, tag_list_file):
        with open(tag_list_file, 'r') as f:
            tag_list = f.read().splitlines()
        tag_list = np.array(tag_list)
        return tag_list

    # delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
    def del_selfattention(self):
        del self.tagging_head.embeddings
        for layer in self.tagging_head.encoder.layer:
            del layer.attention

    def generate(self,
                 image,
                 sample=False,
                 num_beams=3,
                 max_length=30,
                 min_length=10,
                 top_p=0.9,
                 repetition_penalty=1.0,
                 tag_input=None,
                 return_tag_predict=False):

        image_embeds = self.visual_encoder(image)
        image_atts = torch.ones(image_embeds.size()[:-1],
                                dtype=torch.long).to(image.device)

        # if not user specified tags, recognized image tags using image-tag recogntiion decoder
        if tag_input == None:
            image_cls_embeds = image_embeds[:, 0, :]
            image_spatial_embeds = image_embeds[:, 1:, :]

            bs = image_spatial_embeds.shape[0]
            label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
            tagging_embed = self.tagging_head(
                encoder_embeds=label_embed,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=False,
                mode='tagging',
            )

            logits = self.fc(tagging_embed[0])

            targets = torch.where(
                torch.sigmoid(logits) > self.class_threshold,
                torch.tensor(1.0).to(image.device),
                torch.zeros(self.num_class).to(image.device))

            tag = targets.cpu().numpy()

            # delete some tags that may disturb captioning
            tag[:, self.delete_tag_index] = 0

            tag_input = []
            for b in range(bs):
                index = np.argwhere(tag[b] == 1)
                token = self.tag_list[index].squeeze(axis=1)
                tag_input.append(' | '.join(token))
                
        tag_output = tag_input

        # beam search for text generation(default)
        if not sample:
            image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
            tag_input_temp = []
            for tag in tag_input:
                for i in range(num_beams):
                    tag_input_temp.append(tag)
            tag_input = tag_input_temp

        image_atts = torch.ones(image_embeds.size()[:-1],
                                dtype=torch.long).to(image.device)

        # tokenizer input tags
        tag_input_tokenzier = self.tokenizer(tag_input,
                                             padding='max_length',
                                             truncation=True,
                                             max_length=40,
                                             return_tensors="pt").to(
                                                 image.device)
        encoder_input_ids = tag_input_tokenzier.input_ids
        encoder_input_ids[:, 0] = self.tokenizer.enc_token_id

        # put input tag into image-tag interaction encoder to interact with image embeddings
        output_tagembedding = self.tag_encoder(
            encoder_input_ids,
            attention_mask=tag_input_tokenzier.attention_mask,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            return_dict=True,
        )

        # prompt trick for better captioning, followed BLIP
        prompt = [self.prompt] * image.size(0)
        input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(
            image.device)
        input_ids[:, 0] = self.tokenizer.bos_token_id
        input_ids = input_ids[:, :-1]

        if sample:
            # nucleus sampling
            model_kwargs = {
                "encoder_hidden_states": output_tagembedding.last_hidden_state,
                "encoder_attention_mask": None
            }
            outputs = self.text_decoder.generate(
                input_ids=input_ids,
                max_length=max_length,
                min_length=min_length,
                do_sample=True,
                top_p=top_p,
                num_return_sequences=1,
                eos_token_id=self.tokenizer.sep_token_id,
                pad_token_id=self.tokenizer.pad_token_id,
                repetition_penalty=1.1,
                **model_kwargs)
        else:
            # beam search (default)
            model_kwargs = {
                "encoder_hidden_states": output_tagembedding.last_hidden_state,
                "encoder_attention_mask": None
            }
            outputs = self.text_decoder.generate(
                input_ids=input_ids,
                max_length=max_length,
                min_length=min_length,
                num_beams=num_beams,
                eos_token_id=self.tokenizer.sep_token_id,
                pad_token_id=self.tokenizer.pad_token_id,
                repetition_penalty=repetition_penalty,
                **model_kwargs)

        captions = []
        for output in outputs:
            caption = self.tokenizer.decode(output, skip_special_tokens=True)
            captions.append(caption[len(self.prompt):])
        if return_tag_predict == True:
            return  captions, tag_output
        return captions


# load Tag2Text pretrained model parameters
def tag2text_caption(pretrained='', **kwargs):
    model = Tag2Text_Caption(**kwargs)
    if pretrained:
        if kwargs['vit'] == 'swin_b':
            model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
        else:
            model, msg = load_checkpoint(model, pretrained)
        print('vit:', kwargs['vit'])
        print('msg', msg)
    return model


# load RAM pretrained model parameters
def ram(pretrained='', **kwargs):
    model = RAM(**kwargs)
    if pretrained:
        if kwargs['vit'] == 'swin_b':
            model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
        elif kwargs['vit'] == 'swin_l':
            model, msg = load_checkpoint_swinlarge(model, pretrained, kwargs)
        else:
            model, msg = load_checkpoint(model, pretrained)
        print('vit:', kwargs['vit'])
        print('msg', msg)
    return model