Spaces:
Sleeping
Sleeping
File size: 18,728 Bytes
616e7e7 6d1a894 616e7e7 b0832a1 616e7e7 217926f 616e7e7 6d1a894 616e7e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
'''
* Tag2Text
* Written by Xinyu Huang
'''
import warnings
warnings.filterwarnings("ignore")
from models.vit import VisionTransformer, interpolate_pos_embed
from models.swin_transformer import SwinTransformer, interpolate_relative_pos_embed
from models.med import BertConfig, BertModel, BertLMHeadModel
from transformers import BertTokenizer
import torch
from torch import nn
import torch.nn.functional as F
import os
from urllib.parse import urlparse
from timm.models.hub import download_cached_file
from data.tag_class import tra_array
import json
import math
import numpy as np
def read_json(rpath):
with open(rpath, 'r') as f:
return json.load(f)
delete_tag_index = [135]
class Tag2Text_Caption(nn.Module):
def __init__(self,
med_config = 'configs/med_config.json',
image_size = 384,
vit = 'base',
vit_grad_ckpt = False,
vit_ckpt_layer = 0,
prompt = 'a picture of ',
threshold = 0.7,
):
"""
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
"""
super().__init__()
if vit=='swin_b':
if image_size == 224:
vision_config_path = 'configs/swin/config_swinB_224.json'
elif image_size == 384:
vision_config_path = 'configs/swin/config_swinB_384.json'
vision_config = read_json(vision_config_path)
assert image_size == vision_config['image_res']
# assert config['patch_size'] == 32
vision_width = vision_config['vision_width']
self.visual_encoder = SwinTransformer(img_size=vision_config['image_res'],
patch_size=4,
in_chans=3,
embed_dim=vision_config['embed_dim'],
depths=vision_config['depths'],
num_heads=vision_config['num_heads'],
window_size=vision_config['window_size'],
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False)
else:
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
self.tokenizer = init_tokenizer()
# create the decoder
decoder_config = BertConfig.from_json_file(med_config)
decoder_config.encoder_width = 768
self.text_decoder = BertLMHeadModel(config=decoder_config)
# create encoder
encoder_config = BertConfig.from_json_file(med_config)
encoder_config.encoder_width = vision_width
self.tag_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
self.prompt = prompt
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
self.threshold = threshold
num_features = 768
self.num_class = 3429
q2l_config = BertConfig.from_json_file('configs/q2l_config.json')
q2l_config.encoder_width = vision_width
self.vision_multi = BertModel.from_pretrained('bert-base-uncased',config=q2l_config, add_pooling_layer=False)
self.vision_multi.resize_token_embeddings(len(self.tokenizer))
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
self.fc = GroupWiseLinear(self.num_class, num_features, bias=True)
self.del_selfattention()
tie_encoder_decoder_weights(self.tag_encoder,self.vision_multi,'',' ')
self.tag_array = tra_array
def del_selfattention(self):
del self.vision_multi.embeddings
for layer in self.vision_multi.encoder.layer:
del layer.attention
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0, tag_input = None, return_tag_predict = False):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
#==============generate tag==============#
if tag_input == None:
image_spatial_embeds = image_embeds[:,1:,:]
image_cls_embeds = image_embeds[:,0,:]
bs = image_spatial_embeds.shape[0]
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs,1,1)
mlr_tagembedding = self.vision_multi(encoder_embeds = label_embed,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = False,
mode = 'mlr',
)
logits = self.fc(mlr_tagembedding[0])
targets = torch.where(torch.sigmoid(logits) > self.threshold , torch.tensor(1.0).to(image.device), torch.zeros(self.num_class).to(image.device))
tag = targets.cpu().numpy()
tag[:,delete_tag_index] = 0
bs = image.size(0)
tag_input = []
for b in range(bs):
index = np.argwhere(tag[b] == 1)
token = self.tag_array[index].squeeze(axis = 1)
tag_input.append(' | '.join(token))
#========================================#
if not sample:
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
tag_input_temp = []
for tag in tag_input:
for i in range(num_beams):
tag_input_temp.append(tag)
tag_input = tag_input_temp
tag_input_tokenzier = self.tokenizer(tag_input, padding='max_length', truncation=True, max_length=40,
return_tensors="pt").to(image.device)
encoder_input_ids = tag_input_tokenzier.input_ids
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
output_tagembedding = self.tag_encoder(encoder_input_ids,
attention_mask = tag_input_tokenzier.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,
)
prompt = [self.prompt] * image.size(0)
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
input_ids[:,0] = self.tokenizer.bos_token_id
input_ids = input_ids[:, :-1]
if sample:
#nucleus sampling
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None}
outputs = self.text_decoder.generate(input_ids=input_ids,
max_length=max_length,
min_length=min_length,
do_sample=True,
top_p=top_p,
num_return_sequences=1,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=1.1,
**model_kwargs)
else:
#beam search
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None}
outputs = self.text_decoder.generate(input_ids=input_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
captions = []
for output in outputs:
caption = self.tokenizer.decode(output, skip_special_tokens=True)
captions.append(caption[len(self.prompt):])
if return_tag_predict == True:
if sample:
return captions, tag_input
else:
return captions, tag_input[0:int(len(tag_input)/num_beams)]
return captions
def tag2text_caption(pretrained='',**kwargs):
model = Tag2Text_Caption(**kwargs)
if pretrained:
if kwargs['vit'] == 'swin_b':
model,msg = load_checkpoint_swinbase(model,pretrained,kwargs)
else:
model,msg = load_checkpoint(model,pretrained)
print('vit:',kwargs['vit'])
print('msg_v2',msg)
return model
from typing import List
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
uninitialized_encoder_weights: List[str] = []
if decoder.__class__ != encoder.__class__:
logger.info(
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
)
def tie_encoder_to_decoder_recursively(
decoder_pointer: nn.Module,
encoder_pointer: nn.Module,
module_name: str,
uninitialized_encoder_weights: List[str],
skip_key: str,
depth=0,
):
assert isinstance(decoder_pointer, nn.Module) and isinstance(
encoder_pointer, nn.Module
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
assert hasattr(encoder_pointer, "weight")
encoder_pointer.weight = decoder_pointer.weight
if hasattr(decoder_pointer, "bias"):
assert hasattr(encoder_pointer, "bias")
encoder_pointer.bias = decoder_pointer.bias
print(module_name+' is tied')
return
encoder_modules = encoder_pointer._modules
decoder_modules = decoder_pointer._modules
if len(decoder_modules) > 0:
assert (
len(encoder_modules) > 0
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
encoder_layer_pos = 0
for name, module in decoder_modules.items():
if name.isdigit():
encoder_name = str(int(name) + encoder_layer_pos)
decoder_name = name
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
encoder_modules
) != len(decoder_modules):
# this can happen if the name corresponds to the position in a list module list of layers
# in this case the decoder has added a cross-attention that the encoder does not have
# thus skip this step and subtract one layer pos from encoder
encoder_layer_pos -= 1
continue
elif name not in encoder_modules:
continue
elif depth > 500:
raise ValueError(
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
)
else:
decoder_name = encoder_name = name
tie_encoder_to_decoder_recursively(
decoder_modules[decoder_name],
encoder_modules[encoder_name],
module_name + "/" + name,
uninitialized_encoder_weights,
skip_key,
depth=depth + 1,
)
all_encoder_weights.remove(module_name + "/" + encoder_name)
uninitialized_encoder_weights += list(all_encoder_weights)
# tie weights recursively
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
class GroupWiseLinear(nn.Module):
# could be changed to:
# output = torch.einsum('ijk,zjk->ij', x, self.W)
# or output = torch.einsum('ijk,jk->ij', x, self.W[0])
def __init__(self, num_class, hidden_dim, bias=True):
super().__init__()
self.num_class = num_class
self.hidden_dim = hidden_dim
self.bias = bias
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim))
if bias:
self.b = nn.Parameter(torch.Tensor(1, num_class))
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(2))
for i in range(self.num_class):
self.W[0][i].data.uniform_(-stdv, stdv)
if self.bias:
for i in range(self.num_class):
self.b[0][i].data.uniform_(-stdv, stdv)
def forward(self, x):
# x: B,K,d
x = (self.W * x).sum(-1)
if self.bias:
x = x + self.b
return x
def init_tokenizer():
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
return tokenizer
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
assert vit in ['base', 'large'], "vit parameter must be base or large"
if vit=='base':
vision_width = 768
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
drop_path_rate=0 or drop_path_rate
)
elif vit=='large':
vision_width = 1024
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
drop_path_rate=0.1 or drop_path_rate
)
return visual_encoder, vision_width
def is_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def load_checkpoint(model,url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
model.visual_encoder_m)
for key in model.state_dict().keys():
if key in state_dict.keys():
if state_dict[key].shape!=model.state_dict()[key].shape:
del state_dict[key]
msg = model.load_state_dict(state_dict,strict=False)
print('load checkpoint from %s'%url_or_filename)
return model,msg
def load_checkpoint_swinbase(model,url_or_filename,kwargs):
if kwargs['image_size'] == 224:
vision_config_path = 'configs/swin/config_swinB_224.json'
elif kwargs['image_size'] == 384:
vision_config_path = 'configs/swin/config_swinB_384.json'
elif kwargs['image_size'] == 480:
vision_config_path = 'configs/swin/config_swinB_480.json'
elif kwargs['image_size'] == 576:
vision_config_path = 'configs/swin/config_swinB_576.json'
elif kwargs['image_size'] == 608:
vision_config_path = 'configs/swin/config_swinB_608.json'
window_size = read_json(vision_config_path)['window_size']
print('--------------')
print(url_or_filename)
print('--------------')
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
for k in list(state_dict.keys()):
if 'relative_position_bias_table' in k:
dst_num_pos = (2 * window_size - 1) ** 2
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k)
elif ('relative_position_index' in k) or ('attn_mask' in k):
del state_dict[k]
msg = model.load_state_dict(state_dict,strict=False)
print('load checkpoint from %s'%url_or_filename)
return model,msg
|