Spaces:
Sleeping
Sleeping
import numpy as np | |
import random | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
from models.tag2text import tag2text_caption, ram | |
import gradio as gr | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
image_size = 384 | |
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225 | |
]) | |
transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize]) | |
#######Tag2Text Model | |
pretrained = 'tag2text_swin_14m.pth' | |
model_tag2text = tag2text_caption(pretrained=pretrained, image_size=image_size, vit='swin_b' ) | |
model_tag2text.eval() | |
model_tag2text = model_tag2text.to(device) | |
#######RAM Model | |
pretrained = 'ram_swin_large_14m.pth' | |
model_ram = ram(pretrained=pretrained, image_size=image_size, vit='swin_l' ) | |
model_ram.eval() | |
model_ram = model_ram.to(device) | |
def inference(raw_image, model_n , input_tag): | |
raw_image = raw_image.resize((image_size, image_size)) | |
image = transform(raw_image).unsqueeze(0).to(device) | |
if model_n == 'Recognize Anything Model': | |
model = model_ram | |
with torch.no_grad(): | |
tags, tags_chinese = model.generate_tag(image) | |
return tags[0],tags_chinese[0], 'none' | |
else: | |
model = model_tag2text | |
model.threshold = 0.68 | |
if input_tag == '' or input_tag == 'none' or input_tag == 'None': | |
input_tag_list = None | |
else: | |
input_tag_list = [] | |
input_tag_list.append(input_tag.replace(',',' | ')) | |
with torch.no_grad(): | |
caption, tag_predict = model.generate(image,tag_input = input_tag_list,max_length = 50, return_tag_predict = True) | |
if input_tag_list == None: | |
tag_1 = tag_predict | |
tag_2 = ['none'] | |
else: | |
_, tag_1 = model.generate(image,tag_input = None, max_length = 50, return_tag_predict = True) | |
tag_2 = tag_predict | |
return tag_1[0],'none',caption[0] | |
def build_gui(): | |
description = """ | |
<center><strong><font size='10'>Recognize Anything Model</font></strong></center> | |
<br> | |
Welcome to the Recognize Anything Model (RAM) and Tag2Text Model demo! <br><br> | |
<li> | |
<b>Recognize Anything Model:</b> Upload your image to get the <b>English and Chinese outputs of the image tags</b>! | |
</li> | |
<li> | |
<b>Tag2Text Model:</b> Upload your image to get the <b>tags</b> and <b>caption</b> of the image. | |
Optional: You can also input specified tags to get the corresponding caption. | |
</li> | |
""" # noqa | |
article = """ | |
<p style='text-align: center'> | |
RAM and Tag2Text is training on open-source datasets, and we are persisting in refining and iterating upon it.<br/> | |
<a href='https://recognize-anything.github.io/' target='_blank'>Recognize Anything: A Strong Image Tagging Model</a> | |
| | |
<a href='https://https://tag2text.github.io/' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | |
| | |
<a href='https://github.com/xinyu1205/Tag2Text' target='_blank'>Github Repo</a> | |
</p> | |
""" # noqa | |
def inference_with_ram(img): | |
res = inference(img, "Recognize Anything Model", None) | |
return res[0], res[1] | |
def inference_with_t2t(img, input_tags): | |
res = inference(img, "Tag2Text Model", input_tags) | |
return res[0], res[2] | |
with gr.Blocks(title="Recognize Anything Model") as demo: | |
############### | |
# components | |
############### | |
gr.HTML(description) | |
with gr.Tab(label="Recognize Anything Model"): | |
with gr.Row(): | |
with gr.Column(): | |
ram_in_img = gr.Image(type="pil") | |
with gr.Row(): | |
ram_btn_run = gr.Button(value="Run") | |
ram_btn_clear = gr.Button(value="Clear") | |
with gr.Column(): | |
ram_out_tag = gr.Textbox(label="Tags") | |
ram_out_biaoqian = gr.Textbox(label="标签") | |
gr.Examples( | |
examples=[ | |
["images/demo1.jpg"], | |
["images/demo2.jpg"], | |
["images/demo4.jpg"], | |
], | |
fn=inference_with_ram, | |
inputs=[ram_in_img], | |
outputs=[ram_out_tag, ram_out_biaoqian], | |
cache_examples=True | |
) | |
with gr.Tab(label="Tag2Text Model"): | |
with gr.Row(): | |
with gr.Column(): | |
t2t_in_img = gr.Image(type="pil") | |
t2t_in_tag = gr.Textbox(label="User Specified Tags (Optional, separated by comma)") | |
with gr.Row(): | |
t2t_btn_run = gr.Button(value="Run") | |
t2t_btn_clear = gr.Button(value="Clear") | |
with gr.Column(): | |
t2t_out_tag = gr.Textbox(label="Tags") | |
t2t_out_cap = gr.Textbox(label="Caption") | |
gr.Examples( | |
examples=[ | |
["images/demo4.jpg", ""], | |
["images/demo4.jpg", "power line"], | |
["images/demo4.jpg", "track, train"], | |
], | |
fn=inference_with_t2t, | |
inputs=[t2t_in_img, t2t_in_tag], | |
outputs=[t2t_out_tag, t2t_out_cap], | |
cache_examples=True | |
) | |
gr.HTML(article) | |
############### | |
# events | |
############### | |
# run inference | |
ram_btn_run.click( | |
fn=inference_with_ram, | |
inputs=[ram_in_img], | |
outputs=[ram_out_tag, ram_out_biaoqian] | |
) | |
t2t_btn_run.click( | |
fn=inference_with_t2t, | |
inputs=[t2t_in_img, t2t_in_tag], | |
outputs=[t2t_out_tag, t2t_out_cap] | |
) | |
# # images of two image panels should keep the same | |
# # and clear old outputs when image changes | |
# # slow due to internet latency when deployed on huggingface, comment out | |
# def sync_img(v): | |
# return [gr.update(value=v)] + [gr.update(value="")] * 4 | |
# ram_in_img.upload(fn=sync_img, inputs=[ram_in_img], outputs=[ | |
# t2t_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap | |
# ]) | |
# ram_in_img.clear(fn=sync_img, inputs=[ram_in_img], outputs=[ | |
# t2t_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap | |
# ]) | |
# t2t_in_img.clear(fn=sync_img, inputs=[t2t_in_img], outputs=[ | |
# ram_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap | |
# ]) | |
# t2t_in_img.upload(fn=sync_img, inputs=[t2t_in_img], outputs=[ | |
# ram_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap | |
# ]) | |
# clear all | |
def clear_all(): | |
return [gr.update(value=None)] * 2 + [gr.update(value="")] * 5 | |
ram_btn_clear.click(fn=clear_all, inputs=[], outputs=[ | |
ram_in_img, t2t_in_img, | |
ram_out_tag, ram_out_biaoqian, t2t_in_tag, t2t_out_tag, t2t_out_cap | |
]) | |
t2t_btn_clear.click(fn=clear_all, inputs=[], outputs=[ | |
ram_in_img, t2t_in_img, | |
ram_out_tag, ram_out_biaoqian, t2t_in_tag, t2t_out_tag, t2t_out_cap | |
]) | |
return demo | |
if __name__ == "__main__": | |
demo = build_gui() | |
demo.launch(enable_queue=True) | |