xinyu1205's picture
Create utils.py
8e6dc9f
raw
history blame
11.3 kB
import os
import json
import torch
import math
from torch import nn
from typing import List
from transformers import BertTokenizer
from urllib.parse import urlparse
from timm.models.hub import download_cached_file
from models.vit import interpolate_pos_embed
from models.swin_transformer import interpolate_relative_pos_embed
from pathlib import Path
CONFIG_PATH=(Path(__file__).resolve().parents[1])
def read_json(rpath):
with open(rpath, 'r') as f:
return json.load(f)
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module,
base_model_prefix: str, skip_key: str):
uninitialized_encoder_weights: List[str] = []
if decoder.__class__ != encoder.__class__:
logger.info(
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
)
def tie_encoder_to_decoder_recursively(
decoder_pointer: nn.Module,
encoder_pointer: nn.Module,
module_name: str,
uninitialized_encoder_weights: List[str],
skip_key: str,
depth=0,
):
assert isinstance(decoder_pointer, nn.Module) and isinstance(
encoder_pointer, nn.Module
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
assert hasattr(encoder_pointer, "weight")
encoder_pointer.weight = decoder_pointer.weight
if hasattr(decoder_pointer, "bias"):
assert hasattr(encoder_pointer, "bias")
encoder_pointer.bias = decoder_pointer.bias
print(module_name + ' is tied')
return
encoder_modules = encoder_pointer._modules
decoder_modules = decoder_pointer._modules
if len(decoder_modules) > 0:
assert (
len(encoder_modules) > 0
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
all_encoder_weights = set([
module_name + "/" + sub_name
for sub_name in encoder_modules.keys()
])
encoder_layer_pos = 0
for name, module in decoder_modules.items():
if name.isdigit():
encoder_name = str(int(name) + encoder_layer_pos)
decoder_name = name
if not isinstance(
decoder_modules[decoder_name],
type(encoder_modules[encoder_name])) and len(
encoder_modules) != len(decoder_modules):
# this can happen if the name corresponds to the position in a list module list of layers
# in this case the decoder has added a cross-attention that the encoder does not have
# thus skip this step and subtract one layer pos from encoder
encoder_layer_pos -= 1
continue
elif name not in encoder_modules:
continue
elif depth > 500:
raise ValueError(
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
)
else:
decoder_name = encoder_name = name
tie_encoder_to_decoder_recursively(
decoder_modules[decoder_name],
encoder_modules[encoder_name],
module_name + "/" + name,
uninitialized_encoder_weights,
skip_key,
depth=depth + 1,
)
all_encoder_weights.remove(module_name + "/" + encoder_name)
uninitialized_encoder_weights += list(all_encoder_weights)
# tie weights recursively
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix,
uninitialized_encoder_weights, skip_key)
class GroupWiseLinear(nn.Module):
# could be changed to:
# output = torch.einsum('ijk,zjk->ij', x, self.W)
# or output = torch.einsum('ijk,jk->ij', x, self.W[0])
def __init__(self, num_class, hidden_dim, bias=True):
super().__init__()
self.num_class = num_class
self.hidden_dim = hidden_dim
self.bias = bias
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim))
if bias:
self.b = nn.Parameter(torch.Tensor(1, num_class))
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(2))
for i in range(self.num_class):
self.W[0][i].data.uniform_(-stdv, stdv)
if self.bias:
for i in range(self.num_class):
self.b[0][i].data.uniform_(-stdv, stdv)
def forward(self, x):
# x: B,K,d
x = (self.W * x).sum(-1)
if self.bias:
x = x + self.b
return x
def init_tokenizer():
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer.add_special_tokens({'bos_token': '[DEC]'})
tokenizer.add_special_tokens({'additional_special_tokens': ['[ENC]']})
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
return tokenizer
def create_vit(vit,
image_size,
use_grad_checkpointing=False,
ckpt_layer=0,
drop_path_rate=0):
assert vit in ['base', 'large'], "vit parameter must be base or large"
if vit == 'base':
vision_width = 768
visual_encoder = VisionTransformer(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=12,
num_heads=12,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0 or drop_path_rate)
elif vit == 'large':
vision_width = 1024
visual_encoder = VisionTransformer(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=24,
num_heads=16,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0.1 or drop_path_rate)
return visual_encoder, vision_width
def is_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def load_checkpoint(model, url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename,
check_hash=False,
progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(
state_dict['visual_encoder.pos_embed'], model.visual_encoder)
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(
state_dict['visual_encoder_m.pos_embed'], model.visual_encoder_m)
for key in model.state_dict().keys():
if key in state_dict.keys():
if state_dict[key].shape != model.state_dict()[key].shape:
del state_dict[key]
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % url_or_filename)
return model, msg
def load_checkpoint_swinbase(model, url_or_filename, kwargs):
if kwargs['image_size'] == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
elif kwargs['image_size'] == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
window_size = read_json(vision_config_path)['window_size']
print('--------------')
print(url_or_filename)
print('--------------')
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename,
check_hash=False,
progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
for k in list(state_dict.keys()):
if 'relative_position_bias_table' in k:
dst_num_pos = (2 * window_size - 1)**2
state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
dst_num_pos,
param_name=k)
elif ('relative_position_index' in k) or ('attn_mask' in k):
del state_dict[k]
elif "vision_multi" in k:
state_dict[k.replace("vision_multi",
"tagging_head")] = state_dict.pop(k)
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % url_or_filename)
return model, msg
def load_checkpoint_swinlarge(model, url_or_filename, kwargs):
if kwargs['image_size'] == 224:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
elif kwargs['image_size'] == 384:
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
window_size = read_json(vision_config_path)['window_size']
print('--------------')
print(url_or_filename)
print('--------------')
if is_url(url_or_filename):
cached_file = download_cached_file(url_or_filename,
check_hash=False,
progress=True)
checkpoint = torch.load(cached_file, map_location='cpu')
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location='cpu')
else:
raise RuntimeError('checkpoint url or path is invalid')
state_dict = checkpoint['model']
for k in list(state_dict.keys()):
if 'relative_position_bias_table' in k:
dst_num_pos = (2 * window_size - 1)**2
state_dict[k] = interpolate_relative_pos_embed(state_dict[k],
dst_num_pos,
param_name=k)
elif ('relative_position_index' in k) or ('attn_mask' in k):
del state_dict[k]
elif "vision_multi" in k:
state_dict[k.replace("vision_multi",
"tagging_head")] = state_dict.pop(k)
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % url_or_filename)
return model, msg