Spaces:
Sleeping
Sleeping
''' | |
* The Recognize Anything Model (RAM) & Tag2Text Model | |
* Written by Xinyu Huang | |
''' | |
import numpy as np | |
import json | |
import torch | |
import warnings | |
from torch import nn | |
from models.bert import BertConfig, BertModel, BertLMHeadModel | |
from models.vit import VisionTransformer | |
from models.swin_transformer import SwinTransformer | |
from data.ram_tag_list_threshold import ram_class_threshold | |
from models.utils import * | |
warnings.filterwarnings("ignore") | |
class RAM(nn.Module): | |
def __init__(self, | |
med_config=f'{CONFIG_PATH}/configs/med_config.json', | |
image_size=384, | |
vit='base', | |
vit_grad_ckpt=False, | |
vit_ckpt_layer=0, | |
prompt='a picture of ', | |
threshold=0.68, | |
delete_tag_index=[], | |
tag_list=f'{CONFIG_PATH}/data/ram_tag_list.txt', | |
tag_list_chinese=f'{CONFIG_PATH}/data/ram_tag_list_chinese.txt'): | |
r""" The Recognize Anything Model (RAM) inference module. | |
RAM is a strong image tagging model, which can recognize any common category with high accuracy. | |
Described in the paper " Recognize Anything: A Strong Image Tagging Model" https://recognize-anything.github.io/ | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
threshold (int): tagging threshold | |
delete_tag_index (list): delete some tags that may disturb captioning | |
""" | |
super().__init__() | |
# create image encoder | |
if vit == 'swin_b': | |
if image_size == 224: | |
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json' | |
elif image_size == 384: | |
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json' | |
vision_config = read_json(vision_config_path) | |
assert image_size == vision_config['image_res'] | |
# assert config['patch_size'] == 32 | |
vision_width = vision_config['vision_width'] | |
self.visual_encoder = SwinTransformer( | |
img_size=vision_config['image_res'], | |
patch_size=4, | |
in_chans=3, | |
embed_dim=vision_config['embed_dim'], | |
depths=vision_config['depths'], | |
num_heads=vision_config['num_heads'], | |
window_size=vision_config['window_size'], | |
mlp_ratio=4., | |
qkv_bias=True, | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
ape=False, | |
patch_norm=True, | |
use_checkpoint=False) | |
elif vit == 'swin_l': | |
if image_size == 224: | |
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json' | |
elif image_size == 384: | |
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json' | |
vision_config = read_json(vision_config_path) | |
assert image_size == vision_config['image_res'] | |
# assert config['patch_size'] == 32 | |
vision_width = vision_config['vision_width'] | |
self.visual_encoder = SwinTransformer( | |
img_size=vision_config['image_res'], | |
patch_size=4, | |
in_chans=3, | |
embed_dim=vision_config['embed_dim'], | |
depths=vision_config['depths'], | |
num_heads=vision_config['num_heads'], | |
window_size=vision_config['window_size'], | |
mlp_ratio=4., | |
qkv_bias=True, | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
ape=False, | |
patch_norm=True, | |
use_checkpoint=False) | |
else: | |
self.visual_encoder, vision_width = create_vit( | |
vit, image_size, vit_grad_ckpt, vit_ckpt_layer) | |
# create tokenzier | |
self.tokenizer = init_tokenizer() | |
# Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder | |
# create image-tag interaction encoder | |
encoder_config = BertConfig.from_json_file(med_config) | |
encoder_config.encoder_width = 512 | |
self.tag_encoder = BertModel(config=encoder_config, | |
add_pooling_layer=False) | |
# create image-tag-text decoder | |
decoder_config = BertConfig.from_json_file(med_config) | |
self.text_decoder = BertLMHeadModel(config=decoder_config) | |
self.delete_tag_index = delete_tag_index | |
self.prompt = prompt | |
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1 | |
# load tag list | |
self.tag_list = self.load_tag_list(tag_list) | |
self.tag_list_chinese = self.load_tag_list(tag_list_chinese) | |
# create image-tag recognition decoder | |
self.threshold = threshold | |
self.num_class = len(self.tag_list) | |
q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json') | |
q2l_config.encoder_width = 512 | |
self.tagging_head = BertModel(config=q2l_config, | |
add_pooling_layer=False) | |
self.tagging_head.resize_token_embeddings(len(self.tokenizer)) | |
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size) | |
if q2l_config.hidden_size != 512: | |
self.wordvec_proj = nn.Linear(512, q2l_config.hidden_size) | |
else: | |
self.wordvec_proj = nn.Identity() | |
self.fc = nn.Linear(q2l_config.hidden_size, 1) | |
self.del_selfattention() | |
# share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder" | |
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '', | |
' ') | |
self.image_proj = nn.Linear(vision_width, 512) | |
self.label_embed = nn.Parameter(torch.load('data/textual_label_embedding.pth',map_location='cpu').float()) | |
# adjust thresholds for some tags | |
self.class_threshold = torch.ones(self.num_class) * self.threshold | |
for key,value in enumerate(ram_class_threshold): | |
self.class_threshold[key] = value | |
def load_tag_list(self, tag_list_file): | |
with open(tag_list_file, 'r') as f: | |
tag_list = f.read().splitlines() | |
tag_list = np.array(tag_list) | |
return tag_list | |
# delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label | |
def del_selfattention(self): | |
del self.tagging_head.embeddings | |
for layer in self.tagging_head.encoder.layer: | |
del layer.attention | |
def generate_tag(self, | |
image, | |
threshold=0.68, | |
tag_input=None, | |
): | |
label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed)) | |
image_embeds = self.image_proj(self.visual_encoder(image)) | |
image_atts = torch.ones(image_embeds.size()[:-1], | |
dtype=torch.long).to(image.device) | |
# recognized image tags using image-tag recogntiion decoder | |
image_cls_embeds = image_embeds[:, 0, :] | |
image_spatial_embeds = image_embeds[:, 1:, :] | |
bs = image_spatial_embeds.shape[0] | |
label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1) | |
tagging_embed = self.tagging_head( | |
encoder_embeds=label_embed, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=False, | |
mode='tagging', | |
) | |
logits = self.fc(tagging_embed[0]).squeeze(-1) | |
targets = torch.where( | |
torch.sigmoid(logits) > self.class_threshold.to(image.device), | |
torch.tensor(1.0).to(image.device), | |
torch.zeros(self.num_class).to(image.device)) | |
tag = targets.cpu().numpy() | |
tag[:,self.delete_tag_index] = 0 | |
tag_output = [] | |
tag_output_chinese = [] | |
for b in range(bs): | |
index = np.argwhere(tag[b] == 1) | |
token = self.tag_list[index].squeeze(axis=1) | |
tag_output.append(' | '.join(token)) | |
token_chinese = self.tag_list_chinese[index].squeeze(axis=1) | |
tag_output_chinese.append(' | '.join(token_chinese)) | |
return tag_output, tag_output_chinese | |
class Tag2Text_Caption(nn.Module): | |
def __init__(self, | |
med_config=f'{CONFIG_PATH}/configs/med_config.json', | |
image_size=384, | |
vit='base', | |
vit_grad_ckpt=False, | |
vit_ckpt_layer=0, | |
prompt='a picture of ', | |
threshold=0.68, | |
delete_tag_index=[127,2961, 3351, 3265, 3338, 3355, 3359], | |
tag_list=f'{CONFIG_PATH}/data/tag_list.txt'): | |
r""" Tag2Text inference module, both captioning and tagging are included. | |
Tag2Text is an efficient and controllable vision-language pre-training framework. | |
Described in the paper "Tag2Text: Guiding Vision-Language Model via Image Tagging" https://arxiv.org/abs/2303.05657 | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
threshold (int): tagging threshold | |
delete_tag_index (list): delete some tags that may disturb captioning | |
""" | |
super().__init__() | |
# create image encoder | |
if vit == 'swin_b': | |
if image_size == 224: | |
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json' | |
elif image_size == 384: | |
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json' | |
vision_config = read_json(vision_config_path) | |
assert image_size == vision_config['image_res'] | |
# assert config['patch_size'] == 32 | |
vision_width = vision_config['vision_width'] | |
self.visual_encoder = SwinTransformer( | |
img_size=vision_config['image_res'], | |
patch_size=4, | |
in_chans=3, | |
embed_dim=vision_config['embed_dim'], | |
depths=vision_config['depths'], | |
num_heads=vision_config['num_heads'], | |
window_size=vision_config['window_size'], | |
mlp_ratio=4., | |
qkv_bias=True, | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
ape=False, | |
patch_norm=True, | |
use_checkpoint=False) | |
else: | |
self.visual_encoder, vision_width = create_vit( | |
vit, image_size, vit_grad_ckpt, vit_ckpt_layer) | |
# create tokenzier | |
self.tokenizer = init_tokenizer() | |
# Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder | |
# create image-tag interaction encoder | |
encoder_config = BertConfig.from_json_file(med_config) | |
encoder_config.encoder_width = vision_width | |
self.tag_encoder = BertModel(config=encoder_config, | |
add_pooling_layer=False) | |
# create image-tag-text decoder | |
decoder_config = BertConfig.from_json_file(med_config) | |
self.text_decoder = BertLMHeadModel(config=decoder_config) | |
# delete some tags that may disturb captioning | |
# 127: "quarter"; 2961: "back"; 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one" | |
self.delete_tag_index = delete_tag_index | |
self.prompt = prompt | |
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1 | |
# load tag list | |
self.tag_list = self.load_tag_list(tag_list) | |
# create image-tag recognition decoder | |
self.threshold = threshold | |
self.num_class = len(self.tag_list) | |
q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json') | |
q2l_config.encoder_width = vision_width | |
self.tagging_head = BertModel(config=q2l_config, | |
add_pooling_layer=False) | |
self.tagging_head.resize_token_embeddings(len(self.tokenizer)) | |
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size) | |
self.fc = GroupWiseLinear(self.num_class, | |
q2l_config.hidden_size, | |
bias=True) | |
self.del_selfattention() | |
# share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder" | |
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '', | |
' ') | |
# adjust thresholds for some tags | |
# default threshold: 0.68 | |
# 2701: "person"; 2828: "man"; 1167: "woman"; | |
tag_thrshold = {2701:0.7, 2828: 0.7, 1167: 0.7} | |
self.class_threshold = torch.ones(self.num_class) * self.threshold | |
for key,value in tag_thrshold.items(): | |
self.class_threshold[key] = value | |
def load_tag_list(self, tag_list_file): | |
with open(tag_list_file, 'r') as f: | |
tag_list = f.read().splitlines() | |
tag_list = np.array(tag_list) | |
return tag_list | |
# delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label | |
def del_selfattention(self): | |
del self.tagging_head.embeddings | |
for layer in self.tagging_head.encoder.layer: | |
del layer.attention | |
def generate(self, | |
image, | |
sample=False, | |
num_beams=3, | |
max_length=30, | |
min_length=10, | |
top_p=0.9, | |
repetition_penalty=1.0, | |
tag_input=None, | |
return_tag_predict=False): | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1], | |
dtype=torch.long).to(image.device) | |
# if not user specified tags, recognized image tags using image-tag recogntiion decoder | |
if tag_input == None: | |
image_cls_embeds = image_embeds[:, 0, :] | |
image_spatial_embeds = image_embeds[:, 1:, :] | |
bs = image_spatial_embeds.shape[0] | |
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs, 1, 1) | |
tagging_embed = self.tagging_head( | |
encoder_embeds=label_embed, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=False, | |
mode='tagging', | |
) | |
logits = self.fc(tagging_embed[0]) | |
targets = torch.where( | |
torch.sigmoid(logits) > self.class_threshold, | |
torch.tensor(1.0).to(image.device), | |
torch.zeros(self.num_class).to(image.device)) | |
tag = targets.cpu().numpy() | |
# delete some tags that may disturb captioning | |
tag[:, self.delete_tag_index] = 0 | |
tag_input = [] | |
for b in range(bs): | |
index = np.argwhere(tag[b] == 1) | |
token = self.tag_list[index].squeeze(axis=1) | |
tag_input.append(' | '.join(token)) | |
tag_output = tag_input | |
# beam search for text generation(default) | |
if not sample: | |
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0) | |
tag_input_temp = [] | |
for tag in tag_input: | |
for i in range(num_beams): | |
tag_input_temp.append(tag) | |
tag_input = tag_input_temp | |
image_atts = torch.ones(image_embeds.size()[:-1], | |
dtype=torch.long).to(image.device) | |
# tokenizer input tags | |
tag_input_tokenzier = self.tokenizer(tag_input, | |
padding='max_length', | |
truncation=True, | |
max_length=40, | |
return_tensors="pt").to( | |
image.device) | |
encoder_input_ids = tag_input_tokenzier.input_ids | |
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id | |
# put input tag into image-tag interaction encoder to interact with image embeddings | |
output_tagembedding = self.tag_encoder( | |
encoder_input_ids, | |
attention_mask=tag_input_tokenzier.attention_mask, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
# prompt trick for better captioning, followed BLIP | |
prompt = [self.prompt] * image.size(0) | |
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to( | |
image.device) | |
input_ids[:, 0] = self.tokenizer.bos_token_id | |
input_ids = input_ids[:, :-1] | |
if sample: | |
# nucleus sampling | |
model_kwargs = { | |
"encoder_hidden_states": output_tagembedding.last_hidden_state, | |
"encoder_attention_mask": None | |
} | |
outputs = self.text_decoder.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
do_sample=True, | |
top_p=top_p, | |
num_return_sequences=1, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=1.1, | |
**model_kwargs) | |
else: | |
# beam search (default) | |
model_kwargs = { | |
"encoder_hidden_states": output_tagembedding.last_hidden_state, | |
"encoder_attention_mask": None | |
} | |
outputs = self.text_decoder.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=repetition_penalty, | |
**model_kwargs) | |
captions = [] | |
for output in outputs: | |
caption = self.tokenizer.decode(output, skip_special_tokens=True) | |
captions.append(caption[len(self.prompt):]) | |
if return_tag_predict == True: | |
return captions, tag_output | |
return captions | |
# load Tag2Text pretrained model parameters | |
def tag2text_caption(pretrained='', **kwargs): | |
model = Tag2Text_Caption(**kwargs) | |
if pretrained: | |
if kwargs['vit'] == 'swin_b': | |
model, msg = load_checkpoint_swinbase(model, pretrained, kwargs) | |
else: | |
model, msg = load_checkpoint(model, pretrained) | |
print('vit:', kwargs['vit']) | |
print('msg', msg) | |
return model | |
# load RAM pretrained model parameters | |
def ram(pretrained='', **kwargs): | |
model = RAM(**kwargs) | |
if pretrained: | |
if kwargs['vit'] == 'swin_b': | |
model, msg = load_checkpoint_swinbase(model, pretrained, kwargs) | |
elif kwargs['vit'] == 'swin_l': | |
model, msg = load_checkpoint_swinlarge(model, pretrained, kwargs) | |
else: | |
model, msg = load_checkpoint(model, pretrained) | |
print('vit:', kwargs['vit']) | |
print('msg', msg) | |
return model | |