Spaces:
Running
Running
''' | |
* Tag2Text | |
* Written by Xinyu Huang | |
''' | |
import warnings | |
warnings.filterwarnings("ignore") | |
from models.vit import VisionTransformer, interpolate_pos_embed | |
from models.swin_transformer import SwinTransformer, interpolate_relative_pos_embed | |
from models.med import BertConfig, BertModel, BertLMHeadModel | |
from transformers import BertTokenizer | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import os | |
from urllib.parse import urlparse | |
from timm.models.hub import download_cached_file | |
from data.tag_class import tra_array | |
import json | |
import math | |
import numpy as np | |
def read_json(rpath): | |
with open(rpath, 'r') as f: | |
return json.load(f) | |
delete_tag_index = [135] | |
class Tag2Text_Caption(nn.Module): | |
def __init__(self, | |
med_config = 'configs/med_config.json', | |
image_size = 384, | |
vit = 'base', | |
vit_grad_ckpt = False, | |
vit_ckpt_layer = 0, | |
prompt = 'a picture of ', | |
threshold = 0.7, | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
if vit=='swin_b': | |
if image_size == 224: | |
vision_config_path = 'configs/swin/config_swinB_224.json' | |
elif image_size == 384: | |
vision_config_path = 'configs/swin/config_swinB_384.json' | |
vision_config = read_json(vision_config_path) | |
assert image_size == vision_config['image_res'] | |
# assert config['patch_size'] == 32 | |
vision_width = vision_config['vision_width'] | |
self.visual_encoder = SwinTransformer(img_size=vision_config['image_res'], | |
patch_size=4, | |
in_chans=3, | |
embed_dim=vision_config['embed_dim'], | |
depths=vision_config['depths'], | |
num_heads=vision_config['num_heads'], | |
window_size=vision_config['window_size'], | |
mlp_ratio=4., | |
qkv_bias=True, | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
ape=False, | |
patch_norm=True, | |
use_checkpoint=False) | |
else: | |
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) | |
self.tokenizer = init_tokenizer() | |
# create the decoder | |
decoder_config = BertConfig.from_json_file(med_config) | |
decoder_config.encoder_width = 768 | |
self.text_decoder = BertLMHeadModel(config=decoder_config) | |
# create encoder | |
encoder_config = BertConfig.from_json_file(med_config) | |
encoder_config.encoder_width = vision_width | |
self.tag_encoder = BertModel(config=encoder_config, add_pooling_layer=False) | |
self.prompt = prompt | |
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1 | |
self.threshold = threshold | |
num_features = 768 | |
self.num_class = 3429 | |
q2l_config = BertConfig.from_json_file('configs/q2l_config.json') | |
q2l_config.encoder_width = vision_width | |
self.vision_multi = BertModel.from_pretrained('bert-base-uncased',config=q2l_config, add_pooling_layer=False) | |
self.vision_multi.resize_token_embeddings(len(self.tokenizer)) | |
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size) | |
self.fc = GroupWiseLinear(self.num_class, num_features, bias=True) | |
self.del_selfattention() | |
tie_encoder_decoder_weights(self.tag_encoder,self.vision_multi,'',' ') | |
self.tag_array = tra_array | |
def del_selfattention(self): | |
del self.vision_multi.embeddings | |
for layer in self.vision_multi.encoder.layer: | |
del layer.attention | |
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0, tag_input = None, return_tag_predict = False): | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
#==============generate tag==============# | |
if tag_input == None: | |
image_spatial_embeds = image_embeds[:,1:,:] | |
image_cls_embeds = image_embeds[:,0,:] | |
bs = image_spatial_embeds.shape[0] | |
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs,1,1) | |
mlr_tagembedding = self.vision_multi(encoder_embeds = label_embed, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
return_dict = False, | |
mode = 'mlr', | |
) | |
logits = self.fc(mlr_tagembedding[0]) | |
targets = torch.where(torch.sigmoid(logits) > self.threshold , torch.tensor(1.0).to(image.device), torch.zeros(self.num_class).to(image.device)) | |
tag = targets.cpu().numpy() | |
tag[:,delete_tag_index] = 0 | |
bs = image.size(0) | |
tag_input = [] | |
for b in range(bs): | |
index = np.argwhere(tag[b] == 1) | |
token = self.tag_array[index].squeeze(axis = 1) | |
tag_input.append(' | '.join(token)) | |
#========================================# | |
if not sample: | |
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0) | |
tag_input_temp = [] | |
for tag in tag_input: | |
for i in range(num_beams): | |
tag_input_temp.append(tag) | |
tag_input = tag_input_temp | |
tag_input_tokenzier = self.tokenizer(tag_input, padding='max_length', truncation=True, max_length=40, | |
return_tensors="pt").to(image.device) | |
encoder_input_ids = tag_input_tokenzier.input_ids | |
encoder_input_ids[:,0] = self.tokenizer.enc_token_id | |
output_tagembedding = self.tag_encoder(encoder_input_ids, | |
attention_mask = tag_input_tokenzier.attention_mask, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
return_dict = True, | |
) | |
prompt = [self.prompt] * image.size(0) | |
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) | |
input_ids[:,0] = self.tokenizer.bos_token_id | |
input_ids = input_ids[:, :-1] | |
if sample: | |
#nucleus sampling | |
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None} | |
outputs = self.text_decoder.generate(input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
do_sample=True, | |
top_p=top_p, | |
num_return_sequences=1, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=1.1, | |
**model_kwargs) | |
else: | |
#beam search | |
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None} | |
outputs = self.text_decoder.generate(input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=repetition_penalty, | |
**model_kwargs) | |
captions = [] | |
for output in outputs: | |
caption = self.tokenizer.decode(output, skip_special_tokens=True) | |
captions.append(caption[len(self.prompt):]) | |
if return_tag_predict == True: | |
if sample: | |
return captions, tag_input | |
else: | |
return captions, tag_input[0:int(len(tag_input)/num_beams)] | |
return captions | |
def tag2text_caption(pretrained='',**kwargs): | |
model = Tag2Text_Caption(**kwargs) | |
if pretrained: | |
if kwargs['vit'] == 'swin_b': | |
model,msg = load_checkpoint_swinbase(model,pretrained,kwargs) | |
else: | |
model,msg = load_checkpoint(model,pretrained) | |
print('vit:',kwargs['vit']) | |
print('msg_v2',msg) | |
return model | |
from typing import List | |
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str): | |
uninitialized_encoder_weights: List[str] = [] | |
if decoder.__class__ != encoder.__class__: | |
logger.info( | |
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized." | |
) | |
def tie_encoder_to_decoder_recursively( | |
decoder_pointer: nn.Module, | |
encoder_pointer: nn.Module, | |
module_name: str, | |
uninitialized_encoder_weights: List[str], | |
skip_key: str, | |
depth=0, | |
): | |
assert isinstance(decoder_pointer, nn.Module) and isinstance( | |
encoder_pointer, nn.Module | |
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module" | |
if hasattr(decoder_pointer, "weight") and skip_key not in module_name: | |
assert hasattr(encoder_pointer, "weight") | |
encoder_pointer.weight = decoder_pointer.weight | |
if hasattr(decoder_pointer, "bias"): | |
assert hasattr(encoder_pointer, "bias") | |
encoder_pointer.bias = decoder_pointer.bias | |
print(module_name+' is tied') | |
return | |
encoder_modules = encoder_pointer._modules | |
decoder_modules = decoder_pointer._modules | |
if len(decoder_modules) > 0: | |
assert ( | |
len(encoder_modules) > 0 | |
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" | |
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()]) | |
encoder_layer_pos = 0 | |
for name, module in decoder_modules.items(): | |
if name.isdigit(): | |
encoder_name = str(int(name) + encoder_layer_pos) | |
decoder_name = name | |
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( | |
encoder_modules | |
) != len(decoder_modules): | |
# this can happen if the name corresponds to the position in a list module list of layers | |
# in this case the decoder has added a cross-attention that the encoder does not have | |
# thus skip this step and subtract one layer pos from encoder | |
encoder_layer_pos -= 1 | |
continue | |
elif name not in encoder_modules: | |
continue | |
elif depth > 500: | |
raise ValueError( | |
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." | |
) | |
else: | |
decoder_name = encoder_name = name | |
tie_encoder_to_decoder_recursively( | |
decoder_modules[decoder_name], | |
encoder_modules[encoder_name], | |
module_name + "/" + name, | |
uninitialized_encoder_weights, | |
skip_key, | |
depth=depth + 1, | |
) | |
all_encoder_weights.remove(module_name + "/" + encoder_name) | |
uninitialized_encoder_weights += list(all_encoder_weights) | |
# tie weights recursively | |
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key) | |
class GroupWiseLinear(nn.Module): | |
# could be changed to: | |
# output = torch.einsum('ijk,zjk->ij', x, self.W) | |
# or output = torch.einsum('ijk,jk->ij', x, self.W[0]) | |
def __init__(self, num_class, hidden_dim, bias=True): | |
super().__init__() | |
self.num_class = num_class | |
self.hidden_dim = hidden_dim | |
self.bias = bias | |
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim)) | |
if bias: | |
self.b = nn.Parameter(torch.Tensor(1, num_class)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
stdv = 1. / math.sqrt(self.W.size(2)) | |
for i in range(self.num_class): | |
self.W[0][i].data.uniform_(-stdv, stdv) | |
if self.bias: | |
for i in range(self.num_class): | |
self.b[0][i].data.uniform_(-stdv, stdv) | |
def forward(self, x): | |
# x: B,K,d | |
x = (self.W * x).sum(-1) | |
if self.bias: | |
x = x + self.b | |
return x | |
def init_tokenizer(): | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
tokenizer.add_special_tokens({'bos_token':'[DEC]'}) | |
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) | |
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] | |
return tokenizer | |
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): | |
assert vit in ['base', 'large'], "vit parameter must be base or large" | |
if vit=='base': | |
vision_width = 768 | |
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, | |
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
drop_path_rate=0 or drop_path_rate | |
) | |
elif vit=='large': | |
vision_width = 1024 | |
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, | |
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
drop_path_rate=0.1 or drop_path_rate | |
) | |
return visual_encoder, vision_width | |
def is_url(url_or_filename): | |
parsed = urlparse(url_or_filename) | |
return parsed.scheme in ("http", "https") | |
def load_checkpoint(model,url_or_filename): | |
if is_url(url_or_filename): | |
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) | |
checkpoint = torch.load(cached_file, map_location='cpu') | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location='cpu') | |
else: | |
raise RuntimeError('checkpoint url or path is invalid') | |
state_dict = checkpoint['model'] | |
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) | |
if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): | |
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], | |
model.visual_encoder_m) | |
for key in model.state_dict().keys(): | |
if key in state_dict.keys(): | |
if state_dict[key].shape!=model.state_dict()[key].shape: | |
del state_dict[key] | |
msg = model.load_state_dict(state_dict,strict=False) | |
print('load checkpoint from %s'%url_or_filename) | |
return model,msg | |
def load_checkpoint_swinbase(model,url_or_filename,kwargs): | |
if kwargs['image_size'] == 224: | |
vision_config_path = 'configs/swin/config_swinB_224.json' | |
elif kwargs['image_size'] == 384: | |
vision_config_path = 'configs/swin/config_swinB_384.json' | |
elif kwargs['image_size'] == 480: | |
vision_config_path = 'configs/swin/config_swinB_480.json' | |
elif kwargs['image_size'] == 576: | |
vision_config_path = 'configs/swin/config_swinB_576.json' | |
elif kwargs['image_size'] == 608: | |
vision_config_path = 'configs/swin/config_swinB_608.json' | |
window_size = read_json(vision_config_path)['window_size'] | |
print('--------------') | |
print(url_or_filename) | |
print('--------------') | |
if is_url(url_or_filename): | |
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) | |
checkpoint = torch.load(cached_file, map_location='cpu') | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location='cpu') | |
else: | |
raise RuntimeError('checkpoint url or path is invalid') | |
state_dict = checkpoint['model'] | |
for k in list(state_dict.keys()): | |
if 'relative_position_bias_table' in k: | |
dst_num_pos = (2 * window_size - 1) ** 2 | |
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k) | |
elif ('relative_position_index' in k) or ('attn_mask' in k): | |
del state_dict[k] | |
msg = model.load_state_dict(state_dict,strict=False) | |
print('load checkpoint from %s'%url_or_filename) | |
return model,msg | |