import numpy as np import random import torch import torchvision.transforms as transforms from PIL import Image from models.tag2text import tag2text_caption, ram import gradio as gr device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') image_size = 384 normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize]) #######Tag2Text Model pretrained = 'tag2text_swin_14m.pth' model_tag2text = tag2text_caption(pretrained=pretrained, image_size=image_size, vit='swin_b' ) model_tag2text.eval() model_tag2text = model_tag2text.to(device) #######RAM Model pretrained = 'ram_swin_large_14m.pth' model_ram = ram(pretrained=pretrained, image_size=image_size, vit='swin_l' ) model_ram.eval() model_ram = model_ram.to(device) def inference(raw_image, model_n , input_tag): raw_image = raw_image.resize((image_size, image_size)) image = transform(raw_image).unsqueeze(0).to(device) if model_n == 'Recognize Anything Model': model = model_ram tags, tags_chinese = model.generate_tag(image) return tags[0],tags_chinese[0], 'none' else: model = model_tag2text model.threshold = 0.68 if input_tag == '' or input_tag == 'none' or input_tag == 'None': input_tag_list = None else: input_tag_list = [] input_tag_list.append(input_tag.replace(',',' | ')) with torch.no_grad(): caption, tag_predict = model.generate(image,tag_input = input_tag_list,max_length = 50, return_tag_predict = True) if input_tag_list == None: tag_1 = tag_predict tag_2 = ['none'] else: _, tag_1 = model.generate(image,tag_input = None, max_length = 50, return_tag_predict = True) tag_2 = tag_predict return tag_1[0],'none',caption[0] def build_gui(): description = """
Recognize Anything Model

Welcome to the Recognize Anything Model (RAM) and Tag2Text Model demo!

  • Recognize Anything Model: Upload your image to get the English and Chinese outputs of the image tags!
  • Tag2Text Model: Upload your image to get the tags and caption of the image. Optional: You can also input specified tags to get the corresponding caption.
  • """ # noqa article = """

    RAM and Tag2Text is training on open-source datasets, and we are persisting in refining and iterating upon it.
    Recognize Anything: A Strong Image Tagging Model | Tag2Text: Guiding Language-Image Model via Image Tagging | Github Repo

    """ # noqa def inference_with_ram(img): res = inference(img, "Recognize Anything Model", None) return res[0], res[1] def inference_with_t2t(img, input_tags): res = inference(img, "Tag2Text Model", input_tags) return res[0], res[2] with gr.Blocks(title="Recognize Anything Model") as demo: ############### # components ############### gr.HTML(description) with gr.Tab(label="Recognize Anything Model"): with gr.Row(): with gr.Column(): ram_in_img = gr.Image(type="pil") with gr.Row(): ram_btn_run = gr.Button(value="Run") ram_btn_clear = gr.Button(value="Clear") with gr.Column(): ram_out_tag = gr.Textbox(label="Tags") ram_out_biaoqian = gr.Textbox(label="标签") gr.Examples( examples=[ ["images/demo1.jpg"], ["images/demo2.jpg"], ["images/demo4.jpg"], ], fn=inference_with_ram, inputs=[ram_in_img], outputs=[ram_out_tag, ram_out_biaoqian], cache_examples=True ) with gr.Tab(label="Tag2Text Model"): with gr.Row(): with gr.Column(): t2t_in_img = gr.Image(type="pil") t2t_in_tag = gr.Textbox(label="User Specified Tags (Optional, separated by comma)") with gr.Row(): t2t_btn_run = gr.Button(value="Run") t2t_btn_clear = gr.Button(value="Clear") with gr.Column(): t2t_out_tag = gr.Textbox(label="Tags") t2t_out_cap = gr.Textbox(label="Caption") gr.Examples( examples=[ ["images/demo4.jpg", ""], ["images/demo4.jpg", "power line"], ["images/demo4.jpg", "track, train"], ], fn=inference_with_t2t, inputs=[t2t_in_img, t2t_in_tag], outputs=[t2t_out_tag, t2t_out_cap], cache_examples=True ) gr.HTML(article) ############### # events ############### # run inference ram_btn_run.click( fn=inference_with_ram, inputs=[ram_in_img], outputs=[ram_out_tag, ram_out_biaoqian] ) t2t_btn_run.click( fn=inference_with_t2t, inputs=[t2t_in_img, t2t_in_tag], outputs=[t2t_out_tag, t2t_out_cap] ) # # images of two image panels should keep the same # # and clear old outputs when image changes # # slow due to internet latency when deployed on huggingface, comment out # def sync_img(v): # return [gr.update(value=v)] + [gr.update(value="")] * 4 # ram_in_img.upload(fn=sync_img, inputs=[ram_in_img], outputs=[ # t2t_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap # ]) # ram_in_img.clear(fn=sync_img, inputs=[ram_in_img], outputs=[ # t2t_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap # ]) # t2t_in_img.clear(fn=sync_img, inputs=[t2t_in_img], outputs=[ # ram_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap # ]) # t2t_in_img.upload(fn=sync_img, inputs=[t2t_in_img], outputs=[ # ram_in_img, ram_out_tag, ram_out_biaoqian, t2t_out_tag, t2t_out_cap # ]) # clear all def clear_all(): return [gr.update(value=None)] * 2 + [gr.update(value="")] * 5 ram_btn_clear.click(fn=clear_all, inputs=[], outputs=[ ram_in_img, t2t_in_img, ram_out_tag, ram_out_biaoqian, t2t_in_tag, t2t_out_tag, t2t_out_cap ]) t2t_btn_clear.click(fn=clear_all, inputs=[], outputs=[ ram_in_img, t2t_in_img, ram_out_tag, ram_out_biaoqian, t2t_in_tag, t2t_out_tag, t2t_out_cap ]) return demo if __name__ == "__main__": demo = build_gui() demo.launch(enable_queue=True)