Spaces:
Running
Running
import { env, SamModel, AutoProcessor, RawImage, Tensor } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'; | |
// Since we will download the model from the Hugging Face Hub, we can skip the local model check | |
env.allowLocalModels = false; | |
// We adopt the singleton pattern to enable lazy-loading of the model and processor. | |
export class SegmentAnythingSingleton { | |
static model_id = 'Xenova/slimsam-77-uniform'; | |
static model; | |
static processor; | |
static quantized = true; | |
static getInstance() { | |
if (!this.model) { | |
this.model = SamModel.from_pretrained(this.model_id, { | |
quantized: this.quantized, | |
}); | |
} | |
if (!this.processor) { | |
this.processor = AutoProcessor.from_pretrained(this.model_id); | |
} | |
return Promise.all([this.model, this.processor]); | |
} | |
} | |
// State variables | |
let image_embeddings = null; | |
let image_inputs = null; | |
let ready = false; | |
self.onmessage = async (e) => { | |
const [model, processor] = await SegmentAnythingSingleton.getInstance(); | |
if (!ready) { | |
// Indicate that we are ready to accept requests | |
ready = true; | |
self.postMessage({ | |
type: 'ready', | |
}); | |
} | |
const { type, data } = e.data; | |
if (type === 'reset') { | |
image_inputs = null; | |
image_embeddings = null; | |
} else if (type === 'segment') { | |
// Indicate that we are starting to segment the image | |
self.postMessage({ | |
type: 'segment_result', | |
data: 'start', | |
}); | |
// Read the image and recompute image embeddings | |
const image = await RawImage.read(e.data.data); | |
image_inputs = await processor(image); | |
image_embeddings = await model.get_image_embeddings(image_inputs) | |
// Indicate that we have computed the image embeddings, and we are ready to accept decoding requests | |
self.postMessage({ | |
type: 'segment_result', | |
data: 'done', | |
}); | |
} else if (type === 'decode') { | |
// Prepare inputs for decoding | |
const reshaped = image_inputs.reshaped_input_sizes[0]; | |
const points = data.map(x => [x.point[0] * reshaped[1], x.point[1] * reshaped[0]]) | |
const labels = data.map(x => BigInt(x.label)); | |
const input_points = new Tensor( | |
'float32', | |
points.flat(Infinity), | |
[1, 1, points.length, 2], | |
) | |
const input_labels = new Tensor( | |
'int64', | |
labels.flat(Infinity), | |
[1, 1, labels.length], | |
) | |
// Generate the mask | |
const outputs = await model({ | |
...image_embeddings, | |
input_points, | |
input_labels, | |
}) | |
// Post-process the mask | |
const masks = await processor.post_process_masks( | |
outputs.pred_masks, | |
image_inputs.original_sizes, | |
image_inputs.reshaped_input_sizes, | |
); | |
// Send the result back to the main thread | |
self.postMessage({ | |
type: 'decode_result', | |
data: { | |
mask: RawImage.fromTensor(masks[0][0]), | |
scores: outputs.iou_scores.data, | |
}, | |
}); | |
} else { | |
throw new Error(`Unknown message type: ${type}`); | |
} | |
} | |