Spaces:
Running
Running
star-nox
commited on
Commit
•
d87617b
1
Parent(s):
b4791c9
fixed pinecone
Browse files
__pycache__/retrieval.cpython-310.pyc
CHANGED
Binary files a/__pycache__/retrieval.cpython-310.pyc and b/__pycache__/retrieval.cpython-310.pyc differ
|
|
__pycache__/retrieval.cpython-39.pyc
ADDED
Binary file (2.89 kB). View file
|
|
retrieval.py
CHANGED
@@ -15,8 +15,6 @@ from dotenv import load_dotenv
|
|
15 |
from PIL import Image
|
16 |
from transformers import (AutoModelForSequenceClassification, AutoTokenizer, GPT2Tokenizer, OPTForCausalLM, T5ForConditionalGeneration)
|
17 |
|
18 |
-
PINECONE_API_KEY="insert your pinecone api key here"
|
19 |
-
|
20 |
class Retrieval:
|
21 |
def __init__(self,
|
22 |
device='cuda',
|
@@ -35,12 +33,15 @@ class Retrieval:
|
|
35 |
|
36 |
def _load_pinecone_vectorstore(self,):
|
37 |
model_name = "intfloat/e5-large" # best text embedding model. 1024 dims.
|
38 |
-
|
39 |
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
40 |
#pinecone.init(api_key=os.environ['PINECONE_API_KEY'], environment="us-west1-gcp")
|
41 |
pinecone.init(api_key=PINECONE_API_KEY, environment="us-west1-gcp")
|
|
|
42 |
|
|
|
43 |
print(pinecone.list_indexes())
|
|
|
44 |
|
45 |
self.vectorstore = Pinecone(index=pincecone_index, embedding_function=embeddings.embed_query, text_key="text")
|
46 |
|
|
|
15 |
from PIL import Image
|
16 |
from transformers import (AutoModelForSequenceClassification, AutoTokenizer, GPT2Tokenizer, OPTForCausalLM, T5ForConditionalGeneration)
|
17 |
|
|
|
|
|
18 |
class Retrieval:
|
19 |
def __init__(self,
|
20 |
device='cuda',
|
|
|
33 |
|
34 |
def _load_pinecone_vectorstore(self,):
|
35 |
model_name = "intfloat/e5-large" # best text embedding model. 1024 dims.
|
36 |
+
|
37 |
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
38 |
#pinecone.init(api_key=os.environ['PINECONE_API_KEY'], environment="us-west1-gcp")
|
39 |
pinecone.init(api_key=PINECONE_API_KEY, environment="us-west1-gcp")
|
40 |
+
pincecone_index = pinecone.Index("uiuc-chatbot")
|
41 |
|
42 |
+
print("PINECONE: ")
|
43 |
print(pinecone.list_indexes())
|
44 |
+
print(pincecone_index.describe_index_stats())
|
45 |
|
46 |
self.vectorstore = Pinecone(index=pincecone_index, embedding_function=embeddings.embed_query, text_key="text")
|
47 |
|