|
import argparse |
|
import os |
|
from datetime import datetime |
|
from pathlib import Path |
|
from typing import List |
|
|
|
import av |
|
import numpy as np |
|
import torch |
|
import torchvision |
|
from diffusers import AutoencoderKL, DDIMScheduler |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline |
|
from einops import repeat |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from torchvision import transforms |
|
from transformers import CLIPVisionModelWithProjection |
|
|
|
from configs.prompts.test_cases import TestCasesDict |
|
from src.models.pose_guider import PoseGuider |
|
from src.models.unet_2d_condition import UNet2DConditionModel |
|
from src.models.unet_3d import UNet3DConditionModel |
|
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline |
|
from src.utils.util import get_fps, read_frames, save_videos_grid |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--config") |
|
parser.add_argument("-W", type=int, default=512) |
|
parser.add_argument("-H", type=int, default=784) |
|
parser.add_argument("-L", type=int, default=24) |
|
parser.add_argument("--seed", type=int, default=42) |
|
parser.add_argument("--cfg", type=float, default=3.5) |
|
parser.add_argument("--steps", type=int, default=30) |
|
parser.add_argument("--fps", type=int) |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
config = OmegaConf.load(args.config) |
|
|
|
if config.weight_dtype == "fp16": |
|
weight_dtype = torch.float16 |
|
else: |
|
weight_dtype = torch.float32 |
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
config.pretrained_vae_path, |
|
).to("cuda", dtype=weight_dtype) |
|
|
|
reference_unet = UNet2DConditionModel.from_pretrained( |
|
config.pretrained_base_model_path, |
|
subfolder="unet", |
|
).to(dtype=weight_dtype, device="cuda") |
|
|
|
inference_config_path = config.inference_config |
|
infer_config = OmegaConf.load(inference_config_path) |
|
denoising_unet = UNet3DConditionModel.from_pretrained_2d( |
|
config.pretrained_base_model_path, |
|
config.motion_module_path, |
|
subfolder="unet", |
|
unet_additional_kwargs=infer_config.unet_additional_kwargs, |
|
).to(dtype=weight_dtype, device="cuda") |
|
|
|
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to( |
|
dtype=weight_dtype, device="cuda" |
|
) |
|
|
|
image_enc = CLIPVisionModelWithProjection.from_pretrained( |
|
config.image_encoder_path |
|
).to(dtype=weight_dtype, device="cuda") |
|
|
|
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) |
|
scheduler = DDIMScheduler(**sched_kwargs) |
|
|
|
generator = torch.manual_seed(args.seed) |
|
|
|
width, height = args.W, args.H |
|
|
|
|
|
denoising_unet.load_state_dict( |
|
torch.load(config.denoising_unet_path, map_location="cpu"), |
|
strict=False, |
|
) |
|
reference_unet.load_state_dict( |
|
torch.load(config.reference_unet_path, map_location="cpu"), |
|
) |
|
pose_guider.load_state_dict( |
|
torch.load(config.pose_guider_path, map_location="cpu"), |
|
) |
|
|
|
pipe = Pose2VideoPipeline( |
|
vae=vae, |
|
image_encoder=image_enc, |
|
reference_unet=reference_unet, |
|
denoising_unet=denoising_unet, |
|
pose_guider=pose_guider, |
|
scheduler=scheduler, |
|
) |
|
pipe = pipe.to("cuda", dtype=weight_dtype) |
|
|
|
date_str = datetime.now().strftime("%Y%m%d") |
|
time_str = datetime.now().strftime("%H%M") |
|
save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}" |
|
|
|
save_dir = Path(f"output/{date_str}/{save_dir_name}") |
|
save_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
for ref_image_path in config["test_cases"].keys(): |
|
|
|
for pose_video_path in config["test_cases"][ref_image_path]: |
|
ref_name = Path(ref_image_path).stem |
|
pose_name = Path(pose_video_path).stem.replace("_kps", "") |
|
|
|
ref_image_pil = Image.open(ref_image_path).convert("RGB") |
|
|
|
pose_list = [] |
|
pose_tensor_list = [] |
|
pose_images = read_frames(pose_video_path) |
|
src_fps = get_fps(pose_video_path) |
|
print(f"pose video has {len(pose_images)} frames, with {src_fps} fps") |
|
pose_transform = transforms.Compose( |
|
[transforms.Resize((height, width)), transforms.ToTensor()] |
|
) |
|
for pose_image_pil in pose_images[: args.L]: |
|
pose_tensor_list.append(pose_transform(pose_image_pil)) |
|
pose_list.append(pose_image_pil) |
|
|
|
ref_image_tensor = pose_transform(ref_image_pil) |
|
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze( |
|
0 |
|
) |
|
ref_image_tensor = repeat( |
|
ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=args.L |
|
) |
|
|
|
pose_tensor = torch.stack(pose_tensor_list, dim=0) |
|
pose_tensor = pose_tensor.transpose(0, 1) |
|
pose_tensor = pose_tensor.unsqueeze(0) |
|
|
|
video = pipe( |
|
ref_image_pil, |
|
pose_list, |
|
width, |
|
height, |
|
args.L, |
|
args.steps, |
|
args.cfg, |
|
generator=generator, |
|
).videos |
|
|
|
video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0) |
|
save_videos_grid( |
|
video, |
|
f"{save_dir}/{ref_name}_{pose_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4", |
|
n_rows=3, |
|
fps=src_fps if args.fps is None else args.fps, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|