|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import os |
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from controlnet_aux.util import HWC3, resize_image |
|
from PIL import Image |
|
|
|
from . import util |
|
from .wholebody import Wholebody |
|
|
|
|
|
def draw_pose(pose, H, W): |
|
bodies = pose["bodies"] |
|
faces = pose["faces"] |
|
hands = pose["hands"] |
|
candidate = bodies["candidate"] |
|
subset = bodies["subset"] |
|
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) |
|
|
|
canvas = util.draw_bodypose(canvas, candidate, subset) |
|
|
|
canvas = util.draw_handpose(canvas, hands) |
|
|
|
canvas = util.draw_facepose(canvas, faces) |
|
|
|
return canvas |
|
|
|
|
|
class DWposeDetector: |
|
def __init__(self): |
|
pass |
|
|
|
def to(self, device): |
|
self.pose_estimation = Wholebody(device) |
|
return self |
|
|
|
def cal_height(self, input_image): |
|
input_image = cv2.cvtColor( |
|
np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR |
|
) |
|
|
|
input_image = HWC3(input_image) |
|
H, W, C = input_image.shape |
|
with torch.no_grad(): |
|
candidate, subset = self.pose_estimation(input_image) |
|
nums, keys, locs = candidate.shape |
|
|
|
|
|
body = candidate |
|
return body[0, ..., 1].min(), body[..., 1].max() - body[..., 1].min() |
|
|
|
def __call__( |
|
self, |
|
input_image, |
|
detect_resolution=512, |
|
image_resolution=512, |
|
output_type="pil", |
|
**kwargs, |
|
): |
|
input_image = cv2.cvtColor( |
|
np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR |
|
) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
H, W, C = input_image.shape |
|
with torch.no_grad(): |
|
candidate, subset = self.pose_estimation(input_image) |
|
nums, keys, locs = candidate.shape |
|
candidate[..., 0] /= float(W) |
|
candidate[..., 1] /= float(H) |
|
score = subset[:, :18] |
|
max_ind = np.mean(score, axis=-1).argmax(axis=0) |
|
score = score[[max_ind]] |
|
body = candidate[:, :18].copy() |
|
body = body[[max_ind]] |
|
nums = 1 |
|
body = body.reshape(nums * 18, locs) |
|
body_score = copy.deepcopy(score) |
|
for i in range(len(score)): |
|
for j in range(len(score[i])): |
|
if score[i][j] > 0.3: |
|
score[i][j] = int(18 * i + j) |
|
else: |
|
score[i][j] = -1 |
|
|
|
un_visible = subset < 0.3 |
|
candidate[un_visible] = -1 |
|
|
|
foot = candidate[:, 18:24] |
|
|
|
faces = candidate[[max_ind], 24:92] |
|
|
|
hands = candidate[[max_ind], 92:113] |
|
hands = np.vstack([hands, candidate[[max_ind], 113:]]) |
|
|
|
bodies = dict(candidate=body, subset=score) |
|
pose = dict(bodies=bodies, hands=hands, faces=faces) |
|
|
|
detected_map = draw_pose(pose, H, W) |
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize( |
|
detected_map, (W, H), interpolation=cv2.INTER_LINEAR |
|
) |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map, body_score |
|
|