Spaces:
Runtime error
Runtime error
stephenleo
commited on
Commit
•
6988d55
1
Parent(s):
d2b0a3c
adding model files locally for performance
Browse files- helpers.py +1 -1
- sentence-transformers_allenai-specter/.gitattributes +16 -0
- sentence-transformers_allenai-specter/1_Pooling/config.json +7 -0
- sentence-transformers_allenai-specter/README.md +89 -0
- sentence-transformers_allenai-specter/config.json +24 -0
- sentence-transformers_allenai-specter/config_sentence_transformers.json +7 -0
- sentence-transformers_allenai-specter/modules.json +14 -0
- sentence-transformers_allenai-specter/pytorch_model.bin +3 -0
- sentence-transformers_allenai-specter/sentence_bert_config.json +4 -0
- sentence-transformers_allenai-specter/special_tokens_map.json +1 -0
- sentence-transformers_allenai-specter/tokenizer.json +0 -0
- sentence-transformers_allenai-specter/tokenizer_config.json +1 -0
- sentence-transformers_allenai-specter/vocab.txt +0 -0
helpers.py
CHANGED
@@ -40,7 +40,7 @@ def load_data(uploaded_file):
|
|
40 |
@st.cache()
|
41 |
def embedding_gen(data):
|
42 |
logger.info('Calculating Embeddings')
|
43 |
-
return SentenceTransformer('
|
44 |
|
45 |
|
46 |
@st.cache()
|
|
|
40 |
@st.cache()
|
41 |
def embedding_gen(data):
|
42 |
logger.info('Calculating Embeddings')
|
43 |
+
return SentenceTransformer('./sentence-transformers_allenai-specter').encode(data['Text'])
|
44 |
|
45 |
|
46 |
@st.cache()
|
sentence-transformers_allenai-specter/.gitattributes
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
sentence-transformers_allenai-specter/1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
sentence-transformers_allenai-specter/README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
license: apache-2.0
|
8 |
+
---
|
9 |
+
|
10 |
+
# allenai-specter
|
11 |
+
|
12 |
+
This model is a conversion of the [AllenAI SPECTER](https://github.com/allenai/specter) model to [sentence-transformers](https://www.SBERT.net). It can be used to map the titles & abstracts of scientific publications to a vector space such that similar papers are close.
|
13 |
+
|
14 |
+
|
15 |
+
## Usage (Sentence-Transformers)
|
16 |
+
|
17 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U sentence-transformers
|
21 |
+
```
|
22 |
+
|
23 |
+
Then you can use the model like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
+
|
29 |
+
model = SentenceTransformer('sentence-transformers/allenai-specter')
|
30 |
+
embeddings = model.encode(sentences)
|
31 |
+
print(embeddings)
|
32 |
+
```
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Usage (HuggingFace Transformers)
|
37 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoTokenizer, AutoModel
|
41 |
+
import torch
|
42 |
+
|
43 |
+
|
44 |
+
def cls_pooling(model_output, attention_mask):
|
45 |
+
return model_output[0][:,0]
|
46 |
+
|
47 |
+
|
48 |
+
# Sentences we want sentence embeddings for
|
49 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
50 |
+
|
51 |
+
# Load model from HuggingFace Hub
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/allenai-specter')
|
53 |
+
model = AutoModel.from_pretrained('sentence-transformers/allenai-specter')
|
54 |
+
|
55 |
+
# Tokenize sentences
|
56 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
57 |
+
|
58 |
+
# Compute token embeddings
|
59 |
+
with torch.no_grad():
|
60 |
+
model_output = model(**encoded_input)
|
61 |
+
|
62 |
+
# Perform pooling. In this case, max pooling.
|
63 |
+
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
|
64 |
+
|
65 |
+
print("Sentence embeddings:")
|
66 |
+
print(sentence_embeddings)
|
67 |
+
```
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
## Evaluation Results
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/allenai-specter)
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
## Full Model Architecture
|
80 |
+
```
|
81 |
+
SentenceTransformer(
|
82 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
83 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Citing & Authors
|
88 |
+
|
89 |
+
See [AllenAI SPECTER](https://github.com/allenai/specter)
|
sentence-transformers_allenai-specter/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "old_models/allenai-specter/0_Transformer",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"transformers_version": "4.7.0",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 31116
|
24 |
+
}
|
sentence-transformers_allenai-specter/config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
sentence-transformers_allenai-specter/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence-transformers_allenai-specter/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5bc6960694f086334de21eae028f3b38439d3581a3f7bf87f71c91311961d34
|
3 |
+
size 439832305
|
sentence-transformers_allenai-specter/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentence-transformers_allenai-specter/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
sentence-transformers_allenai-specter/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
sentence-transformers_allenai-specter/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "old_models/allenai-specter/0_Transformer", "do_basic_tokenize": true, "never_split": null}
|
sentence-transformers_allenai-specter/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|