Spaces:
Sleeping
Sleeping
add .env
Browse files
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
OPENAI_API_KEY="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"
|
main.py
DELETED
@@ -1,78 +0,0 @@
|
|
1 |
-
|
2 |
-
from langchain.document_loaders import YoutubeLoader
|
3 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
-
from langchain.llms import OpenAI
|
5 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
6 |
-
from langchain.prompts import PromptTemplate
|
7 |
-
from langchain.chains import LLMChain
|
8 |
-
from langchain.vectorstores import FAISS
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
import gradio as gr
|
11 |
-
from langchain.document_loaders import YoutubeLoader
|
12 |
-
|
13 |
-
|
14 |
-
load_dotenv()
|
15 |
-
|
16 |
-
embeddings = OpenAIEmbeddings()
|
17 |
-
|
18 |
-
# video_url = "https://www.youtube.com/watch?v=PfTOr3ONKzU"
|
19 |
-
def create_vector_db_from_youtube_url(video_url: str):
|
20 |
-
loader = YoutubeLoader.from_youtube_url(video_url)
|
21 |
-
transcript = loader.load()
|
22 |
-
|
23 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
24 |
-
docs = text_splitter.split_documents(transcript)
|
25 |
-
|
26 |
-
db = FAISS.from_documents(docs, embeddings)
|
27 |
-
return db
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
# create_vector_db_from_youtube_url(video_url)
|
33 |
-
|
34 |
-
def get_response_from_query(db, query, k=4):
|
35 |
-
docs = db.similarity_search(query, k=k)
|
36 |
-
docs_page_content = " ".join([d.page_content for d in docs])
|
37 |
-
|
38 |
-
llm = OpenAI(model_name="text-davinci-003")
|
39 |
-
prompt = PromptTemplate(
|
40 |
-
input_variables=["question", "docs"],
|
41 |
-
template = """
|
42 |
-
Youare a helpful Youtube assistant that can answer questions about videos based on video transcript.
|
43 |
-
|
44 |
-
Answer the following question: {question}
|
45 |
-
By searching the following video transcript: {docs}
|
46 |
-
|
47 |
-
Only use the factua; information from the transcript to answer the question.
|
48 |
-
|
49 |
-
If you feel like you dont have enough information to answer the question, say "I dont know".
|
50 |
-
|
51 |
-
Your answer ahould be detailed.
|
52 |
-
"""
|
53 |
-
)
|
54 |
-
|
55 |
-
chain = LLMChain(llm=llm, prompt=prompt)
|
56 |
-
|
57 |
-
response = chain.run(question = query, docs = docs_page_content)
|
58 |
-
response = response.replace("\n", " ")
|
59 |
-
return response
|
60 |
-
|
61 |
-
|
62 |
-
def gradio_interface(youtube_url, query):
|
63 |
-
if query and youtube_url:
|
64 |
-
db = create_vector_db_from_youtube_url(youtube_url)
|
65 |
-
response = get_response_from_query(db, query)
|
66 |
-
return response
|
67 |
-
|
68 |
-
# Membuat antarmuka Gradio
|
69 |
-
iface = gr.Interface(
|
70 |
-
fn=gradio_interface,
|
71 |
-
inputs=["text", "text"], # Dua input teks: URL YouTube dan pertanyaan
|
72 |
-
outputs="text", # Output berupa teks
|
73 |
-
title="YouTube Assistant",
|
74 |
-
description="Masukkan URL YouTube dan ajukan pertanyaan tentang video tersebut."
|
75 |
-
)
|
76 |
-
|
77 |
-
# Menjalankan antarmuka Gradio
|
78 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|