Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os.path as osp | |
from copy import deepcopy | |
from mmengine import DictAction | |
from mmdeploy.apis import build_task_processor | |
from mmdeploy.utils.config_utils import load_config | |
from mmdeploy.utils.timer import TimeCounter | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='MMDeploy test (and eval) a backend.') | |
parser.add_argument('deploy_cfg', help='Deploy config path') | |
parser.add_argument('model_cfg', help='Model config path') | |
parser.add_argument( | |
'--model', type=str, nargs='+', help='Input model files.') | |
parser.add_argument( | |
'--device', help='device used for conversion', default='cpu') | |
parser.add_argument( | |
'--work-dir', | |
default='./work_dir', | |
help='the directory to save the file containing evaluation metrics') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
parser.add_argument('--show', action='store_true', help='show results') | |
parser.add_argument( | |
'--show-dir', help='directory where painted images will be saved') | |
parser.add_argument( | |
'--interval', | |
type=int, | |
default=1, | |
help='visualize per interval samples.') | |
parser.add_argument( | |
'--wait-time', | |
type=float, | |
default=2, | |
help='display time of every window. (second)') | |
parser.add_argument( | |
'--log2file', | |
type=str, | |
help='log evaluation results and speed to file', | |
default=None) | |
parser.add_argument( | |
'--speed-test', action='store_true', help='activate speed test') | |
parser.add_argument( | |
'--warmup', | |
type=int, | |
help='warmup before counting inference elapse, require setting ' | |
'speed-test first', | |
default=10) | |
parser.add_argument( | |
'--log-interval', | |
type=int, | |
help='the interval between each log, require setting ' | |
'speed-test first', | |
default=100) | |
parser.add_argument( | |
'--batch-size', | |
type=int, | |
default=1, | |
help='the batch size for test, would override `samples_per_gpu`' | |
'in data config.') | |
parser.add_argument( | |
'--uri', | |
action='store_true', | |
default='192.168.1.1:60000', | |
help='Remote ipv4:port or ipv6:port for inference on edge device.') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
deploy_cfg_path = args.deploy_cfg | |
model_cfg_path = args.model_cfg | |
# load deploy_cfg | |
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path) | |
# work_dir is determined in this priority: CLI > segment in file > filename | |
if args.work_dir is not None: | |
# update configs according to CLI args if args.work_dir is not None | |
work_dir = args.work_dir | |
elif model_cfg.get('work_dir', None) is None: | |
# use config filename as default work_dir if cfg.work_dir is None | |
work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
# merge options for model cfg | |
if args.cfg_options is not None: | |
model_cfg.merge_from_dict(args.cfg_options) | |
task_processor = build_task_processor(model_cfg, deploy_cfg, args.device) | |
# prepare the dataset loader | |
test_dataloader = deepcopy(model_cfg['test_dataloader']) | |
if isinstance(test_dataloader, list): | |
dataset = [] | |
for loader in test_dataloader: | |
ds = task_processor.build_dataset(loader['dataset']) | |
dataset.append(ds) | |
loader['dataset'] = ds | |
loader['batch_size'] = args.batch_size | |
loader = task_processor.build_dataloader(loader) | |
dataloader = test_dataloader | |
else: | |
test_dataloader['batch_size'] = args.batch_size | |
dataset = task_processor.build_dataset(test_dataloader['dataset']) | |
test_dataloader['dataset'] = dataset | |
dataloader = task_processor.build_dataloader(test_dataloader) | |
# load the model of the backend | |
model = task_processor.build_backend_model( | |
args.model, | |
data_preprocessor_updater=task_processor.update_data_preprocessor) | |
destroy_model = model.destroy | |
is_device_cpu = (args.device == 'cpu') | |
runner = task_processor.build_test_runner( | |
model, | |
work_dir, | |
log_file=args.log2file, | |
show=args.show, | |
show_dir=args.show_dir, | |
wait_time=args.wait_time, | |
interval=args.interval, | |
dataloader=dataloader) | |
if args.speed_test: | |
with_sync = not is_device_cpu | |
with TimeCounter.activate( | |
warmup=args.warmup, | |
log_interval=args.log_interval, | |
with_sync=with_sync, | |
file=args.log2file, | |
batch_size=args.batch_size): | |
runner.test() | |
else: | |
runner.test() | |
# only effective when the backend requires explicit clean-up (e.g. Ascend) | |
destroy_model() | |
if __name__ == '__main__': | |
main() | |