Spaces:
Runtime error
Runtime error
File size: 6,742 Bytes
4289090 7a5e46b b26b502 7a5e46b b26b502 7a5e46b b26b502 7a5e46b b26b502 7a5e46b b26b502 7a5e46b b26b502 7a5e46b 4289090 7a5e46b 4289090 7a5e46b 4289090 7a5e46b 4289090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import plotly.graph_objects as go
import networkx as nx
import numpy as np
from bokeh.models import (BoxSelectTool, HoverTool, MultiLine, NodesAndLinkedEdges,
Plot, Range1d, Scatter, TapTool, LabelSet, ColumnDataSource)
from bokeh.palettes import Spectral4
from bokeh.plotting import from_networkx
def create_graph(entities, relationships):
G = nx.Graph()
for entity_id, entity_data in entities.items():
G.add_node(entity_id, label=f"{entity_data.get('value', 'Unknown')} ({entity_data.get('type', 'Unknown')})")
for source, relation, target in relationships:
G.add_edge(source, target, label=relation)
return G
def improved_spectral_layout(G, scale=1):
pos = nx.spectral_layout(G)
# Add some random noise to prevent overlapping
pos = {node: (x + np.random.normal(0, 0.1), y + np.random.normal(0, 0.1)) for node, (x, y) in pos.items()}
# Scale the layout
pos = {node: (x * scale, y * scale) for node, (x, y) in pos.items()}
return pos
def create_bokeh_plot(G, layout_type='spring'):
plot = Plot(width=600, height=600,
x_range=Range1d(-1.2, 1.2), y_range=Range1d(-1.2, 1.2))
plot.title.text = "Knowledge Graph Interaction"
node_hover = HoverTool(tooltips=[("Entity", "@label")])
edge_hover = HoverTool(tooltips=[("Relation", "@label")])
plot.add_tools(node_hover, edge_hover, TapTool(), BoxSelectTool())
# Create layout based on layout_type
if layout_type == 'spring':
pos = nx.spring_layout(G, k=0.5, iterations=50)
elif layout_type == 'fruchterman_reingold':
pos = nx.fruchterman_reingold_layout(G, k=0.5, iterations=50)
elif layout_type == 'circular':
pos = nx.circular_layout(G)
elif layout_type == 'random':
pos = nx.random_layout(G)
elif layout_type == 'spectral':
pos = improved_spectral_layout(G)
elif layout_type == 'shell':
pos = nx.shell_layout(G)
else:
pos = nx.spring_layout(G, k=0.5, iterations=50)
graph_renderer = from_networkx(G, pos, scale=1, center=(0, 0))
graph_renderer.node_renderer.glyph = Scatter(size=15, fill_color=Spectral4[0])
graph_renderer.node_renderer.selection_glyph = Scatter(size=15, fill_color=Spectral4[2])
graph_renderer.node_renderer.hover_glyph = Scatter(size=15, fill_color=Spectral4[1])
graph_renderer.edge_renderer.glyph = MultiLine(line_color="#000", line_alpha=0.9, line_width=3)
graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color=Spectral4[2], line_width=4)
graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color=Spectral4[1], line_width=3)
graph_renderer.selection_policy = NodesAndLinkedEdges()
graph_renderer.inspection_policy = NodesAndLinkedEdges()
plot.renderers.append(graph_renderer)
# Add node labels
x, y = zip(*graph_renderer.layout_provider.graph_layout.values())
node_labels = nx.get_node_attributes(G, 'label')
source = ColumnDataSource({'x': x, 'y': y, 'label': [node_labels[node] for node in G.nodes()]})
labels = LabelSet(x='x', y='y', text='label', source=source, background_fill_color='white',
text_font_size='8pt', background_fill_alpha=0.7)
plot.renderers.append(labels)
# Add edge labels
edge_x, edge_y, edge_labels = [], [], []
for (start_node, end_node, label) in G.edges(data='label'):
start_x, start_y = graph_renderer.layout_provider.graph_layout[start_node]
end_x, end_y = graph_renderer.layout_provider.graph_layout[end_node]
edge_x.append((start_x + end_x) / 2)
edge_y.append((start_y + end_y) / 2)
edge_labels.append(label)
edge_label_source = ColumnDataSource({'x': edge_x, 'y': edge_y, 'label': edge_labels})
edge_labels = LabelSet(x='x', y='y', text='label', source=edge_label_source,
background_fill_color='white', text_font_size='8pt',
background_fill_alpha=0.7)
plot.renderers.append(edge_labels)
return plot
def create_plotly_plot(G, layout_type='spring'):
# Create layout based on layout_type
if layout_type == 'spring':
pos = nx.spring_layout(G, k=0.5, iterations=50)
elif layout_type == 'fruchterman_reingold':
pos = nx.fruchterman_reingold_layout(G, k=0.5, iterations=50)
elif layout_type == 'circular':
pos = nx.circular_layout(G)
elif layout_type == 'random':
pos = nx.random_layout(G)
elif layout_type == 'spectral':
pos = improved_spectral_layout(G)
elif layout_type == 'shell':
pos = nx.shell_layout(G)
else:
pos = nx.spring_layout(G, k=0.5, iterations=50)
edge_trace = go.Scatter(x=[], y=[], line=dict(width=1, color="#888"), hoverinfo="text", mode="lines", text=[])
node_trace = go.Scatter(x=[], y=[], mode="markers+text", hoverinfo="text",
marker=dict(showscale=True, colorscale="Viridis", reversescale=True, color=[], size=15,
colorbar=dict(thickness=15, title="Node Connections", xanchor="left", titleside="right"),
line_width=2),
text=[], textposition="top center")
edge_labels = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_trace["x"] += (x0, x1, None)
edge_trace["y"] += (y0, y1, None)
mid_x, mid_y = (x0 + x1) / 2, (y0 + y1) / 2
edge_labels.append(go.Scatter(x=[mid_x], y=[mid_y], mode="text", text=[G.edges[edge]["label"]],
textposition="middle center", hoverinfo="none", showlegend=False, textfont=dict(size=8)))
for node in G.nodes():
x, y = pos[node]
node_trace["x"] += (x,)
node_trace["y"] += (y,)
node_trace["text"] += (G.nodes[node]["label"],)
node_trace["marker"]["color"] += (len(list(G.neighbors(node))),)
fig = go.Figure(data=[edge_trace, node_trace] + edge_labels,
layout=go.Layout(title="Knowledge Graph", titlefont_size=16, showlegend=False, hovermode="closest",
margin=dict(b=20, l=5, r=5, t=40), annotations=[],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=800, height=600))
fig.update_layout(newshape=dict(line_color="#009900"),
xaxis=dict(scaleanchor="y", scaleratio=1),
yaxis=dict(scaleanchor="x", scaleratio=1))
return fig |