File size: 6,035 Bytes
fc1cddb
 
 
 
 
 
 
3425782
fc1cddb
 
 
 
 
 
 
 
 
088d239
53cc59a
fc1cddb
9415337
fc1cddb
 
c6436ae
fc1cddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
088d239
 
 
fc1cddb
 
 
088d239
fc1cddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6edf83
5732553
64a2ee3
088d239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34c5f15
 
 
088d239
 
 
 
 
 
 
 
 
34c5f15
088d239
 
64a2ee3
fc1cddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
088d239
64a2ee3
 
 
 
088d239
c01b987
 
 
6dd4eac
fc1cddb
3ef5768
34c5f15
9415337
34c5f15
64a2ee3
9415337
3ef5768
fc1cddb
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import html
import pathlib
import tarfile

import deepdanbooru as dd
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import tensorflow as tf
import piexif
import piexif.helper

TITLE = 'DeepDanbooru String'

TOKEN = os.environ['TOKEN']
MODEL_REPO = 'yongxin99/final-prune'
MODEL_FILENAME = 'model-resnet_custom_v3.h5'
LABEL_FILENAME = 'tags.txt'


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--score-slider-step', type=float, default=0.05)
    parser.add_argument('--score-threshold', type=float, default=0.5)
    parser.add_argument('--theme', type=str, default='dark-grass')
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()


def load_sample_image_paths() -> list[pathlib.Path]:
    image_dir = pathlib.Path('images')
    if not image_dir.exists():
        dataset_repo = 'hysts/sample-images-TADNE'
        path = huggingface_hub.hf_hub_download(dataset_repo,
                                               'images.tar.gz',
                                               repo_type='dataset',
                                               use_auth_token=TOKEN)
        with tarfile.open(path) as f:
            f.extractall()
    return sorted(image_dir.glob('*'))


def load_model() -> tf.keras.Model:
    path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                           MODEL_FILENAME,
                                           use_auth_token=TOKEN)
    model = tf.keras.models.load_model(path)
    return model


def load_labels() -> list[str]:
    path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                           LABEL_FILENAME,
                                           use_auth_token=TOKEN)
    with open(path) as f:
        labels = [line.strip() for line in f.readlines()]
    return labels

def plaintext_to_html(text):
    text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
    return text

def predict(image: PIL.Image.Image, score_threshold: float,
            model: tf.keras.Model, labels: list[str]) -> dict[str, float]:
    rawimage = image
    _, height, width, _ = model.input_shape
    image = np.asarray(image)
    image = tf.image.resize(image,
                            size=(height, width),
                            method=tf.image.ResizeMethod.AREA,
                            preserve_aspect_ratio=True)
    image = image.numpy()
    image = dd.image.transform_and_pad_image(image, width, height)
    image = image / 255.
    probs = model.predict(image[None, ...])[0]
    probs = probs.astype(float)
    res = dict()
    for prob, label in zip(probs.tolist(), labels):
        if prob < score_threshold:
            continue
        res[label] = prob
    b = dict(sorted(res.items(),key=lambda item:item[1], reverse=True))
    a = ', '.join(list(b.keys())).replace('_',' ').replace('(','\(').replace(')','\)')
    c = ', '.join(list(b.keys()))
    
    items = rawimage.info
    geninfo = ''
    
    if "exif" in rawimage.info:
        exif = piexif.load(rawimage.info["exif"])
        exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
        try:
            exif_comment = piexif.helper.UserComment.load(exif_comment)
        except ValueError:
            exif_comment = exif_comment.decode('utf8', errors="ignore")
    
        items['exif comment'] = exif_comment
        geninfo = exif_comment
    
        for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
                      'loop', 'background', 'timestamp', 'duration']:
            items.pop(field, None)
    
    geninfo = items.get('parameters', geninfo)
    
    info = f"""
<p><h4>PNG Info</h4></p>    
"""
    for key, text in items.items():
        info += f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip()+"\n"
    
    if len(info) == 0:
        message = "Nothing found in the image."
        info = f"<div><p>{message}<p></div>"
    
    return (a,c,res,info)


def main():
    args = parse_args()
    model = load_model()
    labels = load_labels()

    func = functools.partial(predict, model=model, labels=labels)
    func = functools.update_wrapper(func, predict)

    gr.Interface(
        func,
        [
            gr.inputs.Image(type='pil', label='Input'),
            gr.inputs.Slider(0,
                             1,
                             step=args.score_slider_step,
                             default=args.score_threshold,
                             label='Score Threshold'),
        ],
        [
            gr.outputs.Textbox(label='Output (string)'), 
            gr.outputs.Textbox(label='Output (raw string)'), 
            gr.outputs.Label(label='Output (label)'),
            gr.outputs.HTML()
        ],
        examples=[
        ['miku.jpg',0.5],
        ['miku2.jpg',0.5]
        ],
        title=TITLE,
        description='''
Demo for [KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) with "ready to copy" prompt and a prompt analyzer.

Modified from [hysts/DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)

PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
        ''',
        theme=args.theme,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()