Spaces:
Running
Running
ANeuronI
commited on
Commit
•
1842d77
1
Parent(s):
38dde5a
commit
Browse files- .streamlit/secrets.toml +2 -0
- FINALAPP.py +206 -0
- README.md +33 -0
- _init_.py +1 -0
- requirements.txt +12 -0
- tools.py +44 -0
.streamlit/secrets.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GOOGLE_API_KEY = "AIzaSyDhICh8yNoZ2dgtmuC-bw8byX_7ELvaHIc"
|
2 |
+
GOOGLE_CSE_ID="05aad8a0821c14286"
|
FINALAPP.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from pdfminer.high_level import extract_text
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
|
11 |
+
from langchain.retrievers.multi_query import MultiQueryRetriever
|
12 |
+
from langchain.chains.llm import LLMChain
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain_groq import ChatGroq
|
15 |
+
from langchain.agents import initialize_agent, load_tools
|
16 |
+
|
17 |
+
# Check if the secrets file exists and load it
|
18 |
+
secrets_exists = os.path.exists(os.path.join(os.getcwd(), ".streamlit", "secrets.toml")) or \
|
19 |
+
os.path.exists(os.path.join(os.path.expanduser("~"), ".streamlit", "secrets.toml"))
|
20 |
+
|
21 |
+
if secrets_exists:
|
22 |
+
load_dotenv(os.path.join(os.getcwd(), ".streamlit", "secrets.toml"))
|
23 |
+
|
24 |
+
# Function to extract text from PDFs
|
25 |
+
def extract_text_from_pdfs(docs):
|
26 |
+
text = ""
|
27 |
+
for doc in docs:
|
28 |
+
try:
|
29 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
30 |
+
tmp_file.write(doc.getbuffer())
|
31 |
+
tmp_file_path = tmp_file.name
|
32 |
+
|
33 |
+
extracted_text = extract_text(tmp_file_path)
|
34 |
+
text += extracted_text
|
35 |
+
|
36 |
+
except Exception as e:
|
37 |
+
st.error(f"Error processing {doc.name}: {e}")
|
38 |
+
finally:
|
39 |
+
os.remove(tmp_file_path)
|
40 |
+
|
41 |
+
return text
|
42 |
+
|
43 |
+
# Function to split text into chunks
|
44 |
+
def get_text_chunks(raw_text):
|
45 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
|
46 |
+
chunks = text_splitter.split_text(raw_text)
|
47 |
+
return chunks
|
48 |
+
|
49 |
+
# Function to create FAISS index
|
50 |
+
def create_faiss_index(text_chunks):
|
51 |
+
model_name = "BAAI/bge-small-en"
|
52 |
+
model_kwargs = {"device": "cpu"}
|
53 |
+
encode_kwargs = {"normalize_embeddings": True}
|
54 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name=model_name,
|
55 |
+
model_kwargs=model_kwargs,
|
56 |
+
encode_kwargs=encode_kwargs)
|
57 |
+
|
58 |
+
vector_store = FAISS.from_texts(text_chunks, embeddings)
|
59 |
+
return vector_store
|
60 |
+
|
61 |
+
# Function to get the conversation chain
|
62 |
+
def get_conversation_chain(vector_store, groq_api_key):
|
63 |
+
llm = ChatGroq(
|
64 |
+
temperature=0.7,
|
65 |
+
model="llama3-70b-8192",
|
66 |
+
api_key=groq_api_key,
|
67 |
+
streaming=True,
|
68 |
+
verbose=True
|
69 |
+
)
|
70 |
+
|
71 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
72 |
+
|
73 |
+
prompt_template = PromptTemplate(
|
74 |
+
input_variables=["question"],
|
75 |
+
template="""You are an AI language model assistant. Your task is to generate 3
|
76 |
+
different versions of the given user question to retrieve relevant documents from
|
77 |
+
a vector database. By generating multiple perspectives on the user question, your
|
78 |
+
goal is to help the user overcome some of the limitations of the distance-based
|
79 |
+
similarity search. Provide these alternative questions separated by newlines.
|
80 |
+
Original question: {question}""",
|
81 |
+
)
|
82 |
+
llm_chain = LLMChain(llm=llm, prompt=prompt_template)
|
83 |
+
|
84 |
+
retriever = MultiQueryRetriever(retriever=vector_store.as_retriever(), llm_chain=llm_chain, num_queries=3)
|
85 |
+
|
86 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
87 |
+
llm=llm,
|
88 |
+
retriever=retriever,
|
89 |
+
memory=memory
|
90 |
+
)
|
91 |
+
return conversation_chain, llm
|
92 |
+
|
93 |
+
# Function to get the web agent
|
94 |
+
def get_web_agent(groq_api_key):
|
95 |
+
llm = ChatGroq(
|
96 |
+
temperature=0.7,
|
97 |
+
model="llama3-70b-8192",
|
98 |
+
api_key=groq_api_key,
|
99 |
+
streaming=True,
|
100 |
+
verbose=True
|
101 |
+
)
|
102 |
+
# can create custom tools
|
103 |
+
tools = load_tools([], llm=llm)
|
104 |
+
from tools import summarizer_tool
|
105 |
+
tools.append(summarizer_tool)
|
106 |
+
|
107 |
+
additional_tools = load_tools(["llm-math", "google-search"], llm=llm)
|
108 |
+
tools.extend(additional_tools)
|
109 |
+
|
110 |
+
memory = ConversationBufferMemory(memory_key="chat_history")
|
111 |
+
ZERO_SHOT_REACT_DESCRIPTION = initialize_agent(
|
112 |
+
agent='zero-shot-react-description',
|
113 |
+
tools=tools,
|
114 |
+
llm=llm,
|
115 |
+
verbose=True,
|
116 |
+
max_iterations=10,
|
117 |
+
memory=memory,
|
118 |
+
handle_parsing_errors=True
|
119 |
+
)
|
120 |
+
return ZERO_SHOT_REACT_DESCRIPTION
|
121 |
+
|
122 |
+
# Main function
|
123 |
+
def main():
|
124 |
+
if "conversation" not in st.session_state:
|
125 |
+
st.session_state.conversation = None
|
126 |
+
st.session_state.chat_history = []
|
127 |
+
st.session_state.vector_store = None
|
128 |
+
|
129 |
+
st.set_page_config(page_title="Multi Model Agent", page_icon=":books:")
|
130 |
+
|
131 |
+
st.markdown("<h2 style='text-align: center;'>AI Agent 🤖</h2>", unsafe_allow_html=True)
|
132 |
+
|
133 |
+
with st.sidebar:
|
134 |
+
st.markdown('📖 API_KEYS [REPO](https://github.com/ANeuronI/RAG-AGENT)')
|
135 |
+
st.title("📤 Upload Pdf ")
|
136 |
+
docs = st.file_uploader(" ", type=["pdf"], accept_multiple_files=True)
|
137 |
+
|
138 |
+
file_details = []
|
139 |
+
|
140 |
+
if docs is not None:
|
141 |
+
for doc in docs:
|
142 |
+
file_details.append({"FileName": doc.name})
|
143 |
+
|
144 |
+
with st.expander("Uploaded Files"):
|
145 |
+
if file_details:
|
146 |
+
for details in file_details:
|
147 |
+
st.write(f"File Name: {details['FileName']}")
|
148 |
+
|
149 |
+
st.subheader("Start Model🧠")
|
150 |
+
|
151 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
152 |
+
if groq_api_key:
|
153 |
+
st.success('Groq API key already provided!', icon='✅')
|
154 |
+
else:
|
155 |
+
groq_api_key = st.text_input('Enter Groq API key:', type='password', key='groq_api_key')
|
156 |
+
if groq_api_key and (groq_api_key.startswith('gsk_') and len(groq_api_key) == 56):
|
157 |
+
os.environ['GROQ_API_KEY'] = groq_api_key
|
158 |
+
st.success('Groq API key provided!', icon='✅')
|
159 |
+
else:
|
160 |
+
st.warning('Please enter a valid Groq API key!', icon='⚠️')
|
161 |
+
|
162 |
+
if st.button("Start Inference", key="start_inference") and docs:
|
163 |
+
with st.spinner("Processing..."):
|
164 |
+
raw_text = extract_text_from_pdfs(docs)
|
165 |
+
if raw_text:
|
166 |
+
text_chunks = get_text_chunks(raw_text)
|
167 |
+
vector_store = create_faiss_index(text_chunks)
|
168 |
+
st.session_state.vector_store = vector_store
|
169 |
+
st.write("FAISS Vector Store created successfully.")
|
170 |
+
|
171 |
+
st.session_state.conversation, llm = get_conversation_chain(vector_store, groq_api_key)
|
172 |
+
st.session_state.llm = llm
|
173 |
+
st.session_state.web_agent = get_web_agent(groq_api_key)
|
174 |
+
else:
|
175 |
+
st.error("No text extracted from the documents.")
|
176 |
+
|
177 |
+
if st.session_state.conversation:
|
178 |
+
for message in st.session_state.chat_history:
|
179 |
+
if message['role'] == 'user':
|
180 |
+
with st.chat_message("user"):
|
181 |
+
st.write(message["content"])
|
182 |
+
else:
|
183 |
+
with st.chat_message("assistant"):
|
184 |
+
st.write(message["content"])
|
185 |
+
|
186 |
+
input_disabled = groq_api_key is None
|
187 |
+
|
188 |
+
if prompt := st.chat_input("Ask your question here..." , disabled=input_disabled):
|
189 |
+
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
190 |
+
with st.chat_message("user"):
|
191 |
+
st.write(prompt)
|
192 |
+
|
193 |
+
with st.chat_message("assistant"):
|
194 |
+
with st.spinner("Thinking..."):
|
195 |
+
response = st.session_state.conversation({"question": prompt})
|
196 |
+
if "answer" in response and "I don't know" not in response["answer"]:
|
197 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response['answer']})
|
198 |
+
st.write(response['answer'])
|
199 |
+
else:
|
200 |
+
with st.spinner("Searching the web..."):
|
201 |
+
response = st.session_state.web_agent.run(prompt)
|
202 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
203 |
+
st.write(response)
|
204 |
+
|
205 |
+
if __name__ == '__main__':
|
206 |
+
main()
|
README.md
CHANGED
@@ -11,3 +11,36 @@ license: apache-2.0
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
|
16 |
+
# Multi-Model LLM Agent
|
17 |
+
|
18 |
+
Welcome to the Multi-Model LLM Agent repository! This repository hosts two versions of our language model agent, each offering unique capabilities tailored to different needs.
|
19 |
+
|
20 |
+
## Version 1: RAG Agent
|
21 |
+
- Basic web search functionality
|
22 |
+
- Implementation of RAG (Retrieval-Augmented Generation)
|
23 |
+
|
24 |
+
[Explore Version 1 (RAG Agent)](https://multi-model-rag-agent.streamlit.app/)
|
25 |
+
|
26 |
+
## Version 2: Multi-Model Agent (Final Version)
|
27 |
+
- Advanced web search capabilities, including website scraping
|
28 |
+
- Enhanced RAG model with memory for retaining context across conversations
|
29 |
+
- Multi-query retrieval for handling complex information needs
|
30 |
+
|
31 |
+
[Explore Version 2 (Multi-Model Agent)](https://)
|
32 |
+
|
33 |
+
## How to Use This Model
|
34 |
+
|
35 |
+
### Obtain API Keys
|
36 |
+
Before using the Multi-Model Agent, you need to obtain API keys from the following providers:
|
37 |
+
|
38 |
+
- **GROQ API Keys:** Obtain from [GROQ](https://console.groq.com/keys)
|
39 |
+
- **Replicate API Keys:** Obtain from [Replicate](https://replicate.com/meta/meta-llama-3-70b-instruct)
|
40 |
+
|
41 |
+
### Integration Instructions
|
42 |
+
1. **API Key Setup:** Insert your obtained API keys into the designated configuration.
|
43 |
+
2. **Usage Guide:** Refer to our detailed documentation for integrating the API keys and utilizing the Multi-Model Agent effectively.
|
44 |
+
|
45 |
+
## Notes
|
46 |
+
- **Security:** Keep your API keys secure and adhere to the terms of service of each provider.
|
_init_.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# _init_.py
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.36.0
|
2 |
+
pdfminer.six==20221105
|
3 |
+
langchain
|
4 |
+
langchain-community
|
5 |
+
faiss-cpu==1.7.3
|
6 |
+
langchain-groq
|
7 |
+
python-dotenv==1.0.0
|
8 |
+
langchain-huggingface
|
9 |
+
wikipedia
|
10 |
+
replicate
|
11 |
+
numexpr
|
12 |
+
google-api-python-client>=2.100.0
|
tools.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_groq import ChatGroq
|
2 |
+
from langchain.chains import LLMChain
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
+
from langchain.tools import Tool
|
5 |
+
import os
|
6 |
+
|
7 |
+
# summeriser
|
8 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
9 |
+
|
10 |
+
if not GROQ_API_KEY:
|
11 |
+
raise ValueError("GROQ_API_KEY environment variable is not set.")
|
12 |
+
|
13 |
+
# Initialize ChatGroq for summarization
|
14 |
+
summarizer_llm = ChatGroq(
|
15 |
+
temperature=0.7,
|
16 |
+
model="llama3-8b-8192",
|
17 |
+
api_key=GROQ_API_KEY,
|
18 |
+
streaming=True,
|
19 |
+
verbose=True
|
20 |
+
)
|
21 |
+
|
22 |
+
# Define a prompt template for summarization
|
23 |
+
summarization_prompt = PromptTemplate(
|
24 |
+
input_variables=["text"],
|
25 |
+
template="Summarize the following content: {text}"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Create the summarization chain
|
29 |
+
summarization_chain = LLMChain(
|
30 |
+
llm=summarizer_llm,
|
31 |
+
prompt=summarization_prompt
|
32 |
+
)
|
33 |
+
|
34 |
+
# Define the summarizer tool
|
35 |
+
def summarize_content_tool(text: str) -> str:
|
36 |
+
return summarization_chain.run(text=text)
|
37 |
+
|
38 |
+
summarizer_tool = Tool(
|
39 |
+
name="summarizer",
|
40 |
+
description="Summarizes content using a language model.",
|
41 |
+
func=summarize_content_tool
|
42 |
+
)
|
43 |
+
|
44 |
+
|