Spaces:
Build error
Build error
import matplotlib.pyplot as plt | |
import nmslib | |
import numpy as np | |
import os | |
import streamlit as st | |
from transformers import CLIPProcessor, FlaxCLIPModel | |
import utils | |
BASELINE_MODEL = "openai/clip-vit-base-patch32" | |
# MODEL_PATH = "/home/shared/models/clip-rsicd/bs128x8-lr5e-6-adam/ckpt-1" | |
MODEL_PATH = "flax-community/clip-rsicd-v2" | |
# IMAGE_VECTOR_FILE = "/home/shared/data/vectors/test-baseline.tsv" | |
# IMAGE_VECTOR_FILE = "/home/shared/data/vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv" | |
IMAGE_VECTOR_FILE = "./vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv" | |
# IMAGES_DIR = "/home/shared/data/rsicd_images" | |
IMAGES_DIR = "./images" | |
def app(): | |
filenames, index = utils.load_index(IMAGE_VECTOR_FILE) | |
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL) | |
st.title("Text to Image Retrieval") | |
st.markdown(""" | |
The CLIP model from OpenAI is trained in a self-supervised manner using | |
contrastive learning to project images and caption text onto a common | |
embedding space. We have fine-tuned the model using the RSICD dataset | |
(10k images and ~50k captions from the remote sensing domain). | |
This demo shows the image to text retrieval capabilities of this model, i.e., | |
given a text query, we use our fine-tuned CLIP model to project the text query | |
to the image/caption embedding space and search for nearby images (by | |
cosine similarity) in this space. | |
Our fine-tuned CLIP model was previously used to generate image vectors for | |
our demo, and NMSLib was used for fast vector access. | |
Some suggested queries to start you off with -- `ships`, `school house`, | |
`military installations`, `mountains`, `beaches`, `airports`, `lakes`, etc. | |
""") | |
query = st.text_input("Text Query:") | |
if st.button("Query"): | |
inputs = processor(text=[query], images=None, return_tensors="jax", padding=True) | |
query_vec = model.get_text_features(**inputs) | |
query_vec = np.asarray(query_vec) | |
ids, distances = index.knnQuery(query_vec, k=10) | |
result_filenames = [filenames[id] for id in ids] | |
images, captions = [], [] | |
for result_filename, score in zip(result_filenames, distances): | |
images.append( | |
plt.imread(os.path.join(IMAGES_DIR, result_filename))) | |
captions.append("{:s} (score: {:.3f})".format(result_filename, 1.0 - score)) | |
st.image(images[0:3], caption=captions[0:3]) | |
st.image(images[3:6], caption=captions[3:6]) | |
st.image(images[6:9], caption=captions[6:9]) | |
st.image(images[9:], caption=captions[9:]) | |