# -*- coding: utf-8 -*- """gradio_app.py Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1OQvi3I_q3WfavYBpjovCYfv2SPYt__pF """ import json import gradio as gr import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.text import tokenizer_from_json import tensorflow_addons as tfa # Load the pre-trained model and tokenizer model = tf.keras.models.load_model('baseline.h5') # Assuming you have already loaded the tokenizer configuration from the JSON file. # Replace 'path' with the actual path to the directory where 'tokenizer.json' is saved. with open('tokenizer.json', 'r', encoding='utf-8') as f: tokenizer_config = json.load(f) tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(tokenizer_config) # Define the labels for classification labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] def classify_comment(comment): # Tokenize the comment and convert it into sequences comment_sequence = tokenizer.texts_to_sequences([comment]) comment_sequence = tf.keras.preprocessing.sequence.pad_sequences(comment_sequence, maxlen=200) # Make predictions predictions = model.predict(comment_sequence)[0] results = dict(zip(labels, predictions)) return results # Create the Gradio interface comment_input = gr.inputs.Textbox(label="Enter your comment here") output_text = gr.outputs.Textbox(label="Classification Results") iface = gr.Interface( fn=classify_comment, inputs=comment_input, outputs=output_text, live=True # Set to True for live updates without needing to restart the server ) # Launch the Gradio app iface.launch()