Spaces:
Runtime error
Runtime error
revise logic
Browse files
app.py
CHANGED
@@ -22,17 +22,21 @@ max_seq_length = 32
|
|
22 |
env_decode ={}
|
23 |
with open('tf_labels6.json', encoding='utf-8') as fh:
|
24 |
env_decode = json.load(fh)
|
|
|
25 |
|
26 |
hour_decode={}
|
27 |
with open('tf_labels7.json', encoding='utf-8') as fh:
|
28 |
hour_decode = json.load(fh)
|
|
|
29 |
|
30 |
minute_decode={}
|
31 |
with open('tf_labels8.json', encoding='utf-8') as fh:
|
32 |
minute_decode = json.load(fh)
|
|
|
33 |
|
34 |
def create_model():
|
35 |
|
|
|
36 |
inputs = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32)
|
37 |
embedding_layer = transformer_model(inputs)[0]
|
38 |
|
@@ -81,9 +85,10 @@ def create_model():
|
|
81 |
output_layer7 = Dense(25, activation='softmax', name='output7')(x7)
|
82 |
output_layer8 = Dense(61, activation='softmax', name='output8')(x8)
|
83 |
|
|
|
84 |
for i,layer in enumerate(transformer_model.roberta.encoder.layer[:-1]):
|
85 |
transformer_model.roberta.encoder.layer[i].trainable = False
|
86 |
-
# define the model
|
87 |
model = Model(inputs=inputs , outputs=[output_layer1, output_layer2, output_layer3,output_layer4,output_layer5,output_layer6,output_layer7,output_layer8])
|
88 |
|
89 |
opt = keras.optimizers.Adam(learning_rate=3e-5)
|
@@ -93,12 +98,20 @@ def create_model():
|
|
93 |
'categorical_accuracy'
|
94 |
])
|
95 |
|
|
|
96 |
model.load_weights("t1_m1.h5")
|
97 |
return model
|
98 |
|
99 |
|
100 |
model =create_model()
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
|
104 |
def predict(text):
|
@@ -106,22 +119,22 @@ def predict(text):
|
|
106 |
spilt_thai_text = [word_tokenize(x) for x in test_texts]
|
107 |
new_input_ids = tokenizer(spilt_thai_text, padding=True, truncation=True, return_tensors="tf",is_split_into_words=True)["input_ids"]
|
108 |
test_padded_sequences = pad_sequences(new_input_ids, maxlen=max_seq_length,padding='post',truncating='post',value=1) #post pre
|
109 |
-
print(test_padded_sequences.shape)
|
110 |
predicted_labels = model.predict(test_padded_sequences)
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
for i in range(len(test_texts)):
|
114 |
-
print(test_texts[i])
|
115 |
valid = 1 if predicted_labels[0][i] > 0.5 else 0
|
116 |
is_scene = 1 if predicted_labels[1][i] > 0.5 else 0
|
117 |
has_num = 1 if predicted_labels[2][i] > 0.5 else 0
|
118 |
-
print(f'is_valid : {valid}')
|
119 |
-
print(f'is_scene : {is_scene}')
|
120 |
-
print(f'has_num : {has_num}')
|
121 |
-
|
122 |
turn = 1 if predicted_labels[3][i] > 0.5 else 0
|
123 |
-
print(f'turn_on_off : {turn}')
|
124 |
-
print(f'device : ไฟ')
|
125 |
|
126 |
env_id = np.argmax(predicted_labels[5][i])
|
127 |
env_label = env_decode[env_id]
|
@@ -131,28 +144,29 @@ def predict(text):
|
|
131 |
|
132 |
minute_id = np.argmax(predicted_labels[7][i])
|
133 |
minute_label = minute_decode[minute_id]
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
return
|
150 |
|
151 |
iface = gr.Interface(
|
152 |
fn=predict,
|
153 |
inputs='text',
|
154 |
-
outputs='
|
155 |
-
examples=[["
|
|
|
156 |
)
|
157 |
|
158 |
iface.launch()
|
|
|
22 |
env_decode ={}
|
23 |
with open('tf_labels6.json', encoding='utf-8') as fh:
|
24 |
env_decode = json.load(fh)
|
25 |
+
env_decode = {int(x):y for x,y in env_decode.items()}
|
26 |
|
27 |
hour_decode={}
|
28 |
with open('tf_labels7.json', encoding='utf-8') as fh:
|
29 |
hour_decode = json.load(fh)
|
30 |
+
hour_decode = {int(x):y for x,y in hour_decode.items()}
|
31 |
|
32 |
minute_decode={}
|
33 |
with open('tf_labels8.json', encoding='utf-8') as fh:
|
34 |
minute_decode = json.load(fh)
|
35 |
+
minute_decode = {int(x):y for x,y in minute_decode.items()}
|
36 |
|
37 |
def create_model():
|
38 |
|
39 |
+
# defined architecture for load_model
|
40 |
inputs = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32)
|
41 |
embedding_layer = transformer_model(inputs)[0]
|
42 |
|
|
|
85 |
output_layer7 = Dense(25, activation='softmax', name='output7')(x7)
|
86 |
output_layer8 = Dense(61, activation='softmax', name='output8')(x8)
|
87 |
|
88 |
+
# train only last layer of transformer
|
89 |
for i,layer in enumerate(transformer_model.roberta.encoder.layer[:-1]):
|
90 |
transformer_model.roberta.encoder.layer[i].trainable = False
|
91 |
+
# define the model inputs outputs
|
92 |
model = Model(inputs=inputs , outputs=[output_layer1, output_layer2, output_layer3,output_layer4,output_layer5,output_layer6,output_layer7,output_layer8])
|
93 |
|
94 |
opt = keras.optimizers.Adam(learning_rate=3e-5)
|
|
|
98 |
'categorical_accuracy'
|
99 |
])
|
100 |
|
101 |
+
#load weight
|
102 |
model.load_weights("t1_m1.h5")
|
103 |
return model
|
104 |
|
105 |
|
106 |
model =create_model()
|
107 |
|
108 |
+
room_dict = {
|
109 |
+
'ห้องนั่งเล่น': 'Living Room','ห้องครัว':'Kitchen','ห้องนอน':'Bedroom','ห้องน้ำ':'Bathroom','ห้องรับประทานอาหาร': 'Dining Room','ห้องสมุด': 'Library','ห้องพักผู้มาเยือน': 'Guest Room','ห้องเล่นเกม':'Game Room','ห้องซักผ้า':'Laundry Room','ระเบียง':'balcony','ไม่มีห้อง':'no room'
|
110 |
+
}
|
111 |
+
|
112 |
+
scene_dict = {
|
113 |
+
'ซีน เอ':'scene A','ซีน บี':'scene B','ซีน ซี':'scene C','ซีน ดี':'scene D','ซีน อี':'scene E','ซีน เอฟ':'scene F','ซีน จี':'scene G','ซีน เอช':'scene H','ไม่มีซีน':'no scene'
|
114 |
+
}
|
115 |
|
116 |
|
117 |
def predict(text):
|
|
|
119 |
spilt_thai_text = [word_tokenize(x) for x in test_texts]
|
120 |
new_input_ids = tokenizer(spilt_thai_text, padding=True, truncation=True, return_tensors="tf",is_split_into_words=True)["input_ids"]
|
121 |
test_padded_sequences = pad_sequences(new_input_ids, maxlen=max_seq_length,padding='post',truncating='post',value=1) #post pre
|
|
|
122 |
predicted_labels = model.predict(test_padded_sequences)
|
123 |
+
|
124 |
+
# default answer
|
125 |
+
tmp = {
|
126 |
+
'command' : "not recognized",
|
127 |
+
'room' : None,
|
128 |
+
'device' : None,
|
129 |
+
"hour" : None,
|
130 |
+
"minute": None
|
131 |
+
}
|
132 |
|
133 |
for i in range(len(test_texts)):
|
|
|
134 |
valid = 1 if predicted_labels[0][i] > 0.5 else 0
|
135 |
is_scene = 1 if predicted_labels[1][i] > 0.5 else 0
|
136 |
has_num = 1 if predicted_labels[2][i] > 0.5 else 0
|
|
|
|
|
|
|
|
|
137 |
turn = 1 if predicted_labels[3][i] > 0.5 else 0
|
|
|
|
|
138 |
|
139 |
env_id = np.argmax(predicted_labels[5][i])
|
140 |
env_label = env_decode[env_id]
|
|
|
144 |
|
145 |
minute_id = np.argmax(predicted_labels[7][i])
|
146 |
minute_label = minute_decode[minute_id]
|
147 |
+
|
148 |
+
|
149 |
+
if valid:
|
150 |
+
tmp['device'] = 'ไฟ'
|
151 |
+
tmp['command'] = 'turn on' if turn else 'turn off'
|
152 |
+
if not is_scene:
|
153 |
+
tmp['room'] = room_dict[env_label] if env_label in room_dict else room_dict['ไม่มีห้อง']
|
154 |
+
else:
|
155 |
+
tmp['room'] = scene_dict[env_label] if env_label in scene_dict else room_dict['ไม่มีซีน']
|
156 |
+
|
157 |
+
if has_num:
|
158 |
+
tmp['hour'] = hour_label
|
159 |
+
tmp['minute'] = minute_label
|
160 |
+
|
161 |
+
|
162 |
+
return tmp
|
163 |
|
164 |
iface = gr.Interface(
|
165 |
fn=predict,
|
166 |
inputs='text',
|
167 |
+
outputs='json',
|
168 |
+
examples=[["เปิดไฟห้องนอนหน่อย"],["เปิดไฟซีนเอ"],["ปิดไฟห้องรับประทานอาหารเวลา4ทุ่มสามสิบเจ็ดนาที"],['ปิดไฟห้องน้ำเวลาบ่าย���มงห้าสิบนาที'],["โย่ และนี่คือเสียงจากเด็กวัด"]],
|
169 |
+
interpretation="default",
|
170 |
)
|
171 |
|
172 |
iface.launch()
|