sun-tana commited on
Commit
e409934
β€’
1 Parent(s): 59bdd3b
Files changed (1) hide show
  1. app.py +15 -3
app.py CHANGED
@@ -14,8 +14,8 @@ from transformers import TFAutoModel, AutoTokenizer
14
  from sklearn.model_selection import train_test_split
15
 
16
  # load the tokenizer and transformer model
17
- tokenizer = AutoTokenizer.from_pretrained("nlptown/flaubert_small_cased_sentiment",max_length=60) #xlm-roberta-base bert-base-multilingual-cased
18
- transformer_model = TFAutoModel.from_pretrained("nlptown/flaubert_small_cased_sentiment") #philschmid/tiny-bert-sst2-distilled
19
  max_seq_length = 32
20
 
21
  def create_model():
@@ -86,6 +86,7 @@ def predict(text):
86
  test_padded_sequences = pad_sequences(new_input_ids, maxlen=max_seq_length,padding='post',truncating='post',value=1) #post pre
87
  print(test_padded_sequences.shape)
88
  predicted_labels = model.predict(test_padded_sequences)
 
89
 
90
  for i in range(len(test_texts)):
91
  print(test_texts[i])
@@ -112,7 +113,18 @@ def predict(text):
112
  print(f'hour : {hour_label}')
113
  print(f'minute : {minute_label}')
114
  print('----')
115
- return 'hello'
 
 
 
 
 
 
 
 
 
 
 
116
 
117
  iface = gr.Interface(
118
  fn=predict,
 
14
  from sklearn.model_selection import train_test_split
15
 
16
  # load the tokenizer and transformer model
17
+ tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base",max_length=60) #xlm-roberta-base bert-base-multilingual-cased
18
+ transformer_model = TFAutoModel.from_pretrained("xlm-roberta-base") #philschmid/tiny-bert-sst2-distilled
19
  max_seq_length = 32
20
 
21
  def create_model():
 
86
  test_padded_sequences = pad_sequences(new_input_ids, maxlen=max_seq_length,padding='post',truncating='post',value=1) #post pre
87
  print(test_padded_sequences.shape)
88
  predicted_labels = model.predict(test_padded_sequences)
89
+ output = []
90
 
91
  for i in range(len(test_texts)):
92
  print(test_texts[i])
 
113
  print(f'hour : {hour_label}')
114
  print(f'minute : {minute_label}')
115
  print('----')
116
+ tmp = {
117
+ 'valid' : valid,
118
+ 'is_scene' : is_scene,
119
+ 'has_num' : has_num,
120
+ 'turn_on_off' : turn,
121
+ 'device' : 'ΰΉ„ΰΈŸ',
122
+ 'env' : env_label,
123
+ 'hour' : hour,
124
+ 'minute' : minute,
125
+ }
126
+ output.append(tmp)
127
+ return output
128
 
129
  iface = gr.Interface(
130
  fn=predict,