DepthCrafter / run.py
supersolar's picture
Update run.py
22be043 verified
import gc
import os
import numpy as np
import torch
import argparse
from diffusers.training_utils import set_seed
from depthcrafter.depth_crafter_ppl import DepthCrafterPipeline
from depthcrafter.unet import DiffusersUNetSpatioTemporalConditionModelDepthCrafter
from depthcrafter.utils import vis_sequence_depth, save_video, read_video_frames
class DepthCrafterDemo:
def __init__(
self,
unet_path: str,
pre_train_path: str,
cpu_offload: str = "model",
):
unet = DiffusersUNetSpatioTemporalConditionModelDepthCrafter.from_pretrained(
unet_path,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
)
# load weights of other components from the provided checkpoint
self.pipe = DepthCrafterPipeline.from_pretrained(
pre_train_path,
unet=unet,
torch_dtype=torch.float16,
variant="fp16",
)
# for saving memory, we can offload the model to CPU, or even run the model sequentially to save more memory
if cpu_offload is not None:
if cpu_offload == "sequential":
# This will slow, but save more memory
self.pipe.enable_sequential_cpu_offload()
elif cpu_offload == "model":
self.pipe.enable_model_cpu_offload()
else:
raise ValueError(f"Unknown cpu offload option: {cpu_offload}")
else:
self.pipe.to("cuda")
# enable attention slicing and xformers memory efficient attention
try:
self.pipe.enable_xformers_memory_efficient_attention()
except Exception as e:
print(e)
print("Xformers is not enabled")
self.pipe.enable_attention_slicing()
def infer(
self,
video: str,
num_denoising_steps: int,
guidance_scale: float,
save_folder: str = "./demo_output",
window_size: int = 110,
process_length: int = 195,
overlap: int = 25,
max_res: int = 1024,
target_fps: int = 15,
seed: int = 42,
track_time: bool = True,
save_npz: bool = False,
):
set_seed(seed)
frames, target_fps = read_video_frames(
video, process_length, target_fps, max_res
)
print(f"==> video name: {video}, frames shape: {frames.shape}")
# inference the depth map using the DepthCrafter pipeline
with torch.inference_mode():
res = self.pipe(
frames,
height=frames.shape[1],
width=frames.shape[2],
output_type="np",
guidance_scale=guidance_scale,
num_inference_steps=num_denoising_steps,
window_size=window_size,
overlap=overlap,
track_time=track_time,
).frames[0]
# convert the three-channel output to a single channel depth map
res = res.sum(-1) / res.shape[-1]
# normalize the depth map to [0, 1] across the whole video
res = (res - res.min()) / (res.max() - res.min())
# visualize the depth map and save the results
vis = vis_sequence_depth(res)
# save the depth map and visualization with the target FPS
save_path = os.path.join(
save_folder, os.path.splitext(os.path.basename(video))[0]
)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if save_npz:
np.savez_compressed(save_path + ".npz", depth=res)
save_video(res, save_path + "_depth.mp4", fps=target_fps)
save_video(vis, save_path + "_vis.mp4", fps=target_fps)
save_video(frames, save_path + "_input.mp4", fps=target_fps)
return [
save_path + "_input.mp4",
save_path + "_vis.mp4",
save_path + "_depth.mp4",
]
def run(
self,
input_video,
num_denoising_steps,
guidance_scale,
max_res=1024,
process_length=195,
):
res_path = self.infer(
input_video,
num_denoising_steps,
guidance_scale,
max_res=max_res,
process_length=process_length,
)
# clear the cache for the next video
gc.collect()
torch.cuda.empty_cache()
return res_path[:2]
if __name__ == "__main__":
# running configs
# the most important arguments for memory saving are `cpu_offload`, `enable_xformers`, `max_res`, and `window_size`
# the most important arguments for trade-off between quality and speed are
# `num_inference_steps`, `guidance_scale`, and `max_res`
parser = argparse.ArgumentParser(description="DepthCrafter")
parser.add_argument(
"--video-path", type=str, required=True, help="Path to the input video file(s)"
)
parser.add_argument(
"--save-folder",
type=str,
default="./demo_output",
help="Folder to save the output",
)
parser.add_argument(
"--unet-path",
type=str,
default="tencent/DepthCrafter",
help="Path to the UNet model",
)
parser.add_argument(
"--pre-train-path",
type=str,
default="stabilityai/stable-video-diffusion-img2vid-xt",
help="Path to the pre-trained model",
)
parser.add_argument(
"--process-length", type=int, default=19500, help="Number of frames to process"
)
parser.add_argument(
"--cpu-offload",
type=str,
default="model",
choices=["model", "sequential", None],
help="CPU offload option",
)
parser.add_argument(
"--target-fps", type=int, default=-1, help="Target FPS for the output video"
) # -1 for original fps
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument(
"--num-inference-steps", type=int, default=4, help="Number of inference steps"
)
parser.add_argument(
"--guidance-scale", type=float, default=1, help="Guidance scale"
)
parser.add_argument("--window-size", type=int, default=110, help="Window size")
parser.add_argument("--overlap", type=int, default=25, help="Overlap size")
parser.add_argument("--max-res", type=int, default=512, help="Maximum resolution")
parser.add_argument("--save_npz", type=bool, default=False, help="Save npz file")
parser.add_argument("--track_time", type=bool, default=False, help="Track time")
args = parser.parse_args()
depthcrafter_demo = DepthCrafterDemo(
unet_path=args.unet_path,
pre_train_path=args.pre_train_path,
cpu_offload=args.cpu_offload,
)
# process the videos, the video paths are separated by comma
video_paths = args.video_path.split(",")
for video in video_paths:
depthcrafter_demo.infer(
video,
args.num_inference_steps,
args.guidance_scale,
save_folder=args.save_folder,
window_size=args.window_size,
process_length=args.process_length,
overlap=args.overlap,
max_res=args.max_res,
target_fps=args.target_fps,
seed=args.seed,
track_time=args.track_time,
save_npz=args.save_npz,
)
# clear the cache for the next video
gc.collect()
torch.cuda.empty_cache()