Spaces:
Runtime error
Runtime error
File size: 8,718 Bytes
9610729 87ce726 9610729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
from typing import Tuple, Optional
import shutil
import os
import cv2
import numpy as np
import spaces
import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
from utils.video import generate_unique_name, create_directory, delete_directory
from utils.florencegpu2 import load_florence_model, run_florence_inference, \
FLORENCE_DETAILED_CAPTION_TASK, \
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.modes import IMAGE_INFERENCE_MODES, IMAGE_OPEN_VOCABULARY_DETECTION_MODE, \
IMAGE_CAPTION_GROUNDING_MASKS_MODE, VIDEO_INFERENCE_MODES
from utils.sam import load_sam_image_model, run_sam_inference, load_sam_video_model
DEVICE = torch.device("cuda")
DEVICE = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())][-1]
#DEVICE = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())][0]
# DEVICE = torch.device("cpu")
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
SAM_VIDEO_MODEL = load_sam_video_model(device=DEVICE)
# @title #视频帧提取
import supervision as sv
import os
import cv2
import shutil
def extract_video_frames(video_input):
# 目标目录
VIDEO_TARGET_DIRECTORY = '/kaggle/working/frame'
if not os.path.exists(VIDEO_TARGET_DIRECTORY):
os.makedirs(VIDEO_TARGET_DIRECTORY)
shutil.rmtree(VIDEO_TARGET_DIRECTORY)
# 视频缩放因子
VIDEO_SCALE_FACTOR = 1
# 获取视频信息
video_info = sv.VideoInfo.from_video_path(video_input)
print(video_info)
# 生成唯一的名称
# 使用视频文件名作为唯一名称
name = os.path.splitext(os.path.basename(video_input))[0]
# 构建帧目录路径
frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name)
# 创建 ImageSink 对象
frames_sink = sv.ImageSink(
target_dir_path=frame_directory_path,
image_name_pattern="{:05d}.jpeg"
)
# 获取视频帧生成器
frames_generator = sv.get_video_frames_generator(video_input)
# 使用 with 语句确保资源正确释放
with frames_sink:
# 遍历每一帧
for i, frame in enumerate(frames_generator):
# 如果需要缩放帧
if VIDEO_SCALE_FACTOR != 1:
frame = cv2.resize(frame, None, fx=VIDEO_SCALE_FACTOR, fy=VIDEO_SCALE_FACTOR)
# 保存帧
frames_sink.save_image(frame)
return frame_directory_path,video_info
# 使用示例
video_input_path = '/kaggle/input/pinnpong/VS_010.mp4'# @param {type:"string"}
video_frame_dir,video_info = extract_video_frames(video_input_path)
texts = ['the table', 'all person','ball']
from PIL import Image
import supervision as sv
def detect_objects_in_image(image_input_path, texts):
# 加载图像
image_input = Image.open(image_input_path)
# 初始化检测列表
detections_list = []
# 对每个文本进行检测
for text in texts:
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
text=text
)
# 从结果中构建监督检测对象
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
# 运行 SAM 推理
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
# 将检测结果添加到列表中
detections_list.append(detections)
# 合并所有检测结果
detections = sv.Detections.merge(detections_list)
# 再次运行 SAM 推理
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
return detections
# @title #合并遮罩加模糊merge_image_with_mask
import numpy as np
import cv2
import os
from PIL import Image, ImageFilter
def merge_image_with_mask(image_input_path, detections, output_folder):
# 创建输出文件夹
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# 提取图片文件名
image_name = os.path.basename(image_input_path)
output_path = os.path.join(output_folder, image_name)
# 创建掩码文件夹
mask_folder = '/kaggle/working/mask'
if not os.path.exists(mask_folder):
os.makedirs(mask_folder)
# 合并掩码
combined_mask = np.zeros_like(detections.mask[0], dtype=np.uint8)
for mask in detections.mask:
combined_mask += mask
combined_mask = np.clip(combined_mask, 0, 255)
combined_mask = combined_mask.astype(np.uint8)
# 膨胀掩码
kernel = np.ones((6, 6), np.uint8)
dilated_mask = cv2.dilate(combined_mask, kernel, iterations=1)
# 保存膨胀后的掩码
#mask_path = os.path.join(mask_folder, 'test1.png')
#cv2.imwrite(mask_path, dilated_mask * 255)
# 读取原始图像
original_image = cv2.imread(image_input_path)
# 读取遮罩图片
#mask_image = cv2.imread(mask_path)
# 确保原始图片和遮罩图片尺寸一致
#assert original_image.shape == mask_image.shape, "The images must have the same dimensions."
# 使用掩膜从原始图片中提取部分区域
masked_image = cv2.bitwise_and(original_image, original_image, mask=dilated_mask)
# 将掩膜应用于原始图片
blurred_image = cv2.GaussianBlur(original_image, (21, 21), 500) # 使用较大的核大小进行模糊
# 将提取的部分区域叠加到模糊后的图片上
blurred_image = cv2.bitwise_and(blurred_image, blurred_image, mask=~dilated_mask)
# 将提取的部分区域叠加到模糊后的图片上
result = np.where(dilated_mask[:, :, None] > 0, masked_image, blurred_image)
# 保存合并后的图片
cv2.imwrite(output_path, result)
# @title #进度条批量处理文件夹process_images_in_folder(input_folder)
from tqdm import tqdm
import shutil
def process_images_in_folder(input_folder):
# 确保输出文件夹存在
output_folder = '/kaggle/working/okframe'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
shutil.rmtree('/kaggle/working/okframe')
output_folder = '/kaggle/working/okframe'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# 获取文件夹中的所有文件
files = [f for f in os.listdir(input_folder) if f.endswith('.jpg') or f.endswith('.png') or f.endswith('.jpeg')]
# 使用 tqdm 显示进度条
for filename in tqdm(files, desc="Processing Images"):
image_input_path = os.path.join(input_folder, filename)
# 检测对象
detections = detect_objects_in_image(
image_input_path=image_input_path,
texts=texts
)
# 合并图像
merge_image_with_mask(
image_input_path=image_input_path,
detections=detections,
output_folder=output_folder
)
# 使用示例
video_name = video_input_path.split('/')[-1].split('.')[0]
input_folder = f'/kaggle/working/frame/{video_name}'
process_images_in_folder(input_folder)
# @title #合并所有帧成新视频frames_to_video(frame_folder, video_output_path, video_info)
import cv2
import os
import natsort
import numpy as np
def frames_to_video(frame_folder, video_output_path, video_info):
# 获取所有帧文件名,并使用 natsorted 进行自然排序
frame_files = natsort.natsorted([f for f in os.listdir(frame_folder) if f.endswith(('.jpg', '.png', '.jpeg'))])
# 创建视频写入器
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 编码器
out = cv2.VideoWriter(video_output_path, fourcc, video_info.fps, (video_info.width, video_info.height))
# 遍历所有帧文件
for frame_file in frame_files:
frame_path = os.path.join(frame_folder, frame_file)
frame = cv2.imread(frame_path)
# 如果帧大小不匹配,调整大小
if frame.shape[:2] != (video_info.height, video_info.width):
frame = cv2.resize(frame, (video_info.width, video_info.height))
# 写入视频
out.write(frame)
# 释放资源
out.release()
# 使用示例
video_info = video_info
frame_folder = '/kaggle/working/okframe'
video_output_path = '/kaggle/working/output_video.mp4'
frames_to_video(frame_folder, video_output_path, video_info)
|