Spaces:
Runtime error
Runtime error
File size: 8,982 Bytes
ff0340e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import numpy as np
import torch
import nvdiffrast.torch as dr
import json
import torch.nn.functional as F
from PIL import Image
import pymeshlab
import cv2
def back_to_texture(glctx, look_at, pos, tri, tex, uv, uv_idx, idx, vn):
rast_out, rast_out_db = dr.rasterize(glctx, pos, tri, resolution=[tex.shape[0],tex.shape[1]])
gb_normal, _ = dr.interpolate(vn[None], rast_out, tri)
gb_normal = F.normalize(gb_normal, dim=-1)
if idx == 2 or idx == 0:
filter_camera = [torch.tensor([[[[1,0.,0.]]]]).cuda(), torch.tensor([[[[-1,0.,0.]]]]).cuda()]
else:
filter_camera = [torch.tensor([[[[0,-1.,0.]]]]).cuda(), torch.tensor([[[[0,1.,0.]]]]).cuda()]
nmasks = []
for fc in filter_camera:
nmasks.append(((gb_normal * fc) > 0.75).int().sum(keepdim=True, dim=-1))
gb_normal_mask = 1 - (nmasks[0] | nmasks[1])
#Image.fromarray(np.clip(gb_normal_mask[0,...,0].detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)).save(f"mask_normal_{idx}.png")
gb_mask = rast_out[...,3:4] > 0
tri_list = torch.unique(rast_out[...,3:4].reshape(-1))
tri_list = (tri_list[1:] - 1).to(torch.int32)
pos = pos[0]
depth_map = rast_out[...,3:4].clone()
depth_map[depth_map > 0] = 1
depth_map = depth_map.to(torch.float32)
dmax = (rast_out[...,2:3] * gb_mask).max()
uv = torch.cat([uv * 2 - 1, torch.zeros(uv.shape[0], 1).cuda(), torch.ones(uv.shape[0], 1).cuda()], dim=1).unsqueeze(0)
uv_idx = uv_idx[tri_list.to(torch.long)]
rast_uv, rast_uv_db = dr.rasterize(glctx, uv, uv_idx, resolution=(1024, 1024))
pos_clip = torch.cat([pos[...,:2], pos[...,3:]], -1)
pos_2d, _ = dr.interpolate(pos_clip, rast_uv, tri[tri_list.to(torch.long)]) # pos (x, y, z, w)
pos_coord = (pos_2d[...,:2] / (pos_2d[...,2:3] + 1e-6) + 1) / 2.
texture_mask = (rast_uv[...,3:4] > 0).int()
color = dr.texture(tex[None, ...] * gb_normal_mask, pos_coord, filter_mode='linear')
color_mask = dr.texture(gb_normal_mask.to(torch.float32), pos_coord, filter_mode='linear')
color_mask[color_mask > 0.82] = 1
color_mask[color_mask <= 0.82] = 0
color_mask = color_mask.to(torch.int32)
#Image.fromarray(np.clip(color_mask[0].repeat(1,1,3).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)).save(f"depth_{idx}.png")
texture_mask = texture_mask * color_mask
#Image.fromarray(np.clip(color[0].detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)).save(f"{idx}.png")
#Image.fromarray(np.clip(texture_mask[0].repeat(1,1,3).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)).convert("RGB").save(f"mask-{idx}.png")
return color, texture_mask, rast_uv
def perspective(fovy=0.6913, aspect=1.0, n=0.1, f=1000.0, device=None):
y = np.tan(fovy / 2)
return torch.tensor([[1/(y*aspect), 0, 0, 0],
[ 0, 1/-y, 0, 0],
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
[ 0, 0, -1, 0]]).to(torch.float32).cuda()
def rec_mvp(trans, h, w):
mv = trans
fov = 40. / 180. * np.pi
proj = perspective(fov, h / w, n=0.1, f=1000)
mvp = proj @ mv
return mvp
def aggregate_texture(kd_map, textures, texture_masks, rast_uvs):
texture = torch.zeros_like(textures[0])
texture_mask = torch.zeros_like(texture_masks[0])
ctex = []
for idx in range(len(textures)):
ctex.append(textures[idx] * texture_masks[idx] + 10 * (1 - texture_masks[idx]))
cat_textures = torch.stack(ctex, dim=-2)
dis_measure = (cat_textures - kd_map.unsqueeze(-2)).abs().sum(-1)
_, choose_idx = dis_measure.min(-1)
choose_idx = choose_idx.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 1, 1, 3)
final_texture_map = torch.gather(cat_textures, 3, choose_idx).squeeze(-2)
#cv2.imwrite("final_texture_map.png", cv2.cvtColor((final_texture_map[0].cpu().numpy() * 255).astype(np.uint8), cv2.COLOR_BGR2RGB))
#cv2.imwrite("final_texture_mask.png", (texture_mask[0].cpu().numpy() * 255).astype(np.uint8))
zero_mask = (final_texture_map.max(dim=-1, keepdim=True)[0] > 0.1)
close_mask = ((final_texture_map[0] - kd_map).abs().sum(dim=-1, keepdim=True) < 1.0).int()
for idx in range(len(textures)):
texture += textures[idx] * texture_masks[idx]
texture_mask |= texture_masks[idx]
texture_mask = texture_mask * zero_mask * close_mask[None]
optimize_mask = (texture_mask == 0).int()
#import pdb; pdb.set_trace()
#mask = (texture_mask[0].cpu().numpy() * 255).astype(np.uint8)
#cv2.imwrite("mask.png", mask)
#kernel = np.ones((5,5), np.uint8)
#dilated = cv2.dilate(mask, kernel, iterations=1)
#cv2.imwrite("di_mask.png", dilated)
#texture_mask[0] = torch.from_numpy(dilated).unsqueeze(-1).to(torch.float32) / 255.
final_texture_map = final_texture_map[0] * texture_mask[0]
Image.fromarray(np.rint(final_texture_map.cpu().numpy() * 255).astype(np.uint8)).save(f"final_texture.png")
#cv2.imwrite("kd_map.png", cv2.cvtColor((kd_map.cpu().numpy() * 255).astype(np.uint8), cv2.COLOR_BGR2RGB))
#cv2.imwrite("texture_map.png", cv2.cvtColor((final_texture_map.cpu().numpy() * 255).astype(np.uint8), cv2.COLOR_BGR2RGB))
#result = cv2.seamlessClone((final_texture_map.cpu().numpy() * 255).astype(np.uint8), (kd_map.cpu().numpy() * 255).astype(np.uint8), mask, (mask.shape[1]//2, mask.shape[0]//2), cv2.NORMAL_CLONE)
#cv2.imwrite("result.png", cv2.cvtColor(result * 255, cv2.COLOR_BGR2RGB))
kd_map = kd_map * (1 - texture_mask[0]) + final_texture_map
return kd_map, optimize_mask
def refine(save_path, front_image, back_image, left_image, right_image):
ms = pymeshlab.MeshSet()
mesh_path = f"{save_path}/model-00.obj"
ms.load_new_mesh(mesh_path)
ms.apply_coord_laplacian_smoothing(stepsmoothnum=10)
tl = open(mesh_path, "r").readlines()
tex_uv = []
uv_idx = []
for line in tl:
if line.startswith("vt"):
uvs = line.split(" ")[1:3]
tex_uv += [float(uvs[0]), 1.0-float(uvs[1])]
tex_uv = torch.from_numpy(np.array(tex_uv)).to(torch.float32).cuda().reshape(-1, 2)
m = ms.current_mesh()
v_matrix = m.vertex_matrix()
f_matrix = m.face_matrix()
vn = m.vertex_normal_matrix()
uv_idx = torch.arange(f_matrix.shape[0] * 3).reshape(-1, 3).to(torch.int32).cuda()
vn = torch.tensor(vn).contiguous().cuda().to(torch.float32)
frames = []
front_camera = torch.tensor([[
1,0,0,0,
0,0,1,0,
0,-1,0,-1.5,
0,0,0,1,
]]).to(torch.float32).reshape(4,4).cuda()
back_camera = torch.tensor([[
1,0,0,0,
0,0,1,0,
0,1,0,-1.5,
0,0,0,1,
]]).to(torch.float32).reshape(4,4).cuda()
right_camera = torch.tensor([[
0,-1,0,0,
0,0,1,0,
1,0,0,-1.5,
0,0,0,1,
]]).to(torch.float32).reshape(4,4).cuda()
left_camera = torch.tensor([[
0,1,0,0,
0,0,1,0,
-1,0,0,-1.5,
0,0,0,1,
]]).to(torch.float32).reshape(4,4).cuda()
frames = [front_camera, left_camera, back_camera, right_camera]
target_images = []
for target_image in [front_image, left_image, back_image, right_image]:
target_images.append(torch.from_numpy(np.asarray(target_image.convert("RGB"))).to(torch.float32).cuda() / 255.)
pos = torch.tensor(v_matrix, dtype=torch.float32).contiguous().cuda()
tri = torch.tensor(f_matrix, dtype=torch.int32).contiguous().cuda()
kd_map = (torch.tensor(np.asarray(Image.open(f"{save_path}/texture_kd.jpg"))) / 255.).cuda()
translate_tensor = torch.zeros((1,1,3)).cuda()
pos = torch.cat([pos, torch.ones([pos.shape[0], 1]).cuda()],-1).unsqueeze(0)
glctx = dr.RasterizeCudaContext()
target_texture = []
target_mask = []
rast_uvs = []
with torch.no_grad():
for idx, trans in enumerate(frames):
target_image = target_images[idx]
look_at = -torch.linalg.inv(trans)[:3,2]
mvp = rec_mvp(trans, h=target_images[0].shape[0], w=target_images[0].shape[1])
trans_pos = pos.clone()
trans_pos[...,:3] += translate_tensor
view_pos = torch.matmul(mvp, trans_pos.unsqueeze(-1)).squeeze(-1)
texture, mask, rast_uv = back_to_texture(glctx, look_at, view_pos, tri, target_image, tex_uv, uv_idx, idx, vn)
target_texture.append(texture)
target_mask.append(mask)
rast_uvs.append(rast_uv)
kd_map, opt_mask = aggregate_texture(kd_map, target_texture, target_mask, rast_uvs)
opt_mask = opt_mask[0]
Image.fromarray((np.clip(kd_map.detach().cpu().numpy() * 255, 0, 255)).astype(np.uint8)).save(f"{save_path}/refined_texture_kd.jpg")
#ms.save_current_mesh(f"{save_path}/model-00.obj")
with open(f"{save_path}/model-00.mtl", "w") as f:
f.write(f"newmtl default\nKa 0.0 0.0 0.0\nmap_Kd refined_texture_kd.jpg\nKs 0.0 0.0 0.0") |