File size: 5,584 Bytes
eb3ba2e
 
 
 
 
 
 
 
 
6f1ebe2
5837809
6f1ebe2
 
 
 
 
 
 
 
 
 
 
eb3ba2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1ebe2
eb3ba2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1ebe2
5837809
 
 
 
 
 
 
 
 
 
 
6f1ebe2
 
 
 
eb3ba2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import uuid
import numpy as np
import torch
import soundfile as sf
from gtts import gTTS
import edge_tts
from inference import Inference
import asyncio
from elevenlabs import voices, generate, save
from elevenlabs.api.error import UnauthenticatedRateLimitError

ELEVENLABS_VOICES_RAW = voices()

def get_elevenlabs_voice_names():
    elevenlabs_voice_names = []
    for voice in ELEVENLABS_VOICES_RAW:
        elevenlabs_voice_names.append(voice.name)
    return elevenlabs_voice_names

ELEVENLABS_VOICES_NAMES = get_elevenlabs_voice_names()

#git+https://github.com/suno-ai/bark.git
# from transformers import AutoProcessor, BarkModel
# import nltk
# from nltk.tokenize import sent_tokenize
# from bark import SAMPLE_RATE

# now_dir = os.getcwd()

def cast_to_device(tensor, device):
    try:
        return tensor.to(device)
    except Exception as e:
        print(e)
        return tensor

# Buscar la forma de evitar descargar el archivo de 4gb cada vez que crea una instancia
# def _bark_conversion_(text, voice_preset):
#     os.makedirs(os.path.join(now_dir, "tts"), exist_ok=True)

#     device = "cuda:0" if torch.cuda.is_available() else "cpu"
#     dtype = torch.float32 if "cpu" in device else torch.float16
#     bark_processor = AutoProcessor.from_pretrained(
#         "suno/bark",
#         cache_dir=os.path.join(now_dir, "tts", "suno/bark"),
#         torch_dtype=dtype,
#     )
#     bark_model = BarkModel.from_pretrained(
#         "suno/bark",
#         cache_dir=os.path.join(now_dir, "tts", "suno/bark"),
#         torch_dtype=dtype,
#     ).to(device)
#     # bark_model.enable_cpu_offload()
#     inputs = bark_processor(text=[text], return_tensors="pt", voice_preset=voice_preset)
#     tensor_dict = {
#         k: cast_to_device(v, device) if hasattr(v, "to") else v
#         for k, v in inputs.items()
#     }
#     speech_values = bark_model.generate(**tensor_dict, do_sample=True)
#     sampling_rate = bark_model.generation_config.sample_rate
#     speech = speech_values.cpu().numpy().squeeze()
#     return speech, sampling_rate


def tts_infer(tts_text, model_url, tts_method, tts_model, tts_api_key):
    if not tts_text:
        return 'Primero escribe el texto que quieres convertir.', None
    if not tts_model:
        return 'Selecciona un modelo TTS antes de convertir.', None
        
    f0_method = "harvest" 
    output_folder = "audios"
    os.makedirs(output_folder, exist_ok=True)
    converted_tts_filename = os.path.join(output_folder, f"tts_out_{uuid.uuid4()}.wav")
    success = False

    if len(tts_text) > 60:
        tts_text = tts_text[:60]
        print("DEMO; limit to 60 characters")

    language = tts_model[:2]
    if tts_method == "Edge-tts":
        try:
            asyncio.run(
                edge_tts.Communicate(
                    tts_text, "-".join(tts_model.split("-")[:-1])
                ).save(converted_tts_filename)
            )
            success = True
        except Exception as e:
            print("ERROR", e)
            try:
                tts = gTTS(tts_text, lang=language)
                tts.save(converted_tts_filename)
                print(
                    f"No audio was received. Please change the tts voice for {tts_model}. USING gTTS."
                )
                success = True
            except:
                tts = gTTS("a", lang=language)
                tts.save(converted_tts_filename)
                print("Error: Audio will be replaced.")
                success = False
    if tts_method == 'ElevenLabs':
        try:
            audio = generate(
                text=tts_text,
                voice=tts_model,
                model="eleven_multilingual_v2",
                api_key=tts_api_key
            )
            save(audio=audio, filename=converted_tts_filename)
            success = True
        except UnauthenticatedRateLimitError:
            return "Necesitas configurar tu API Key para usar elevenlabs", None
        
    if not model_url:
        return 'Pon la url del modelo si quieres aplicarle otro tono.', converted_tts_filename
    
    # elif tts_method == "Bark-tts":
    #     try:
    #         script = tts_text.replace("\n", " ").strip()
    #         sentences = sent_tokenize(script)
    #         silence = np.zeros(int(0.25 * SAMPLE_RATE))
    #         pieces = []
    #         for sentence in sentences:
    #             audio_array, _ = _bark_conversion_(sentence, tts_model.split("-")[0])
    #             pieces += [audio_array, silence.copy()]

    #         sf.write(
    #             file=converted_tts_filename, samplerate=SAMPLE_RATE, data=np.concatenate(pieces)
    #         )
            
    #     except Exception as e:
    #         print(f"{e}")
    #         return None, None
    
    if success:
        inference = Inference(
            model_name=model_url,
            f0_method=f0_method,
            source_audio_path=converted_tts_filename,
            output_file_name=os.path.join("./audio-outputs", os.path.basename(converted_tts_filename)),
        )
        output = inference.run()
        if os.path.exists(converted_tts_filename):
            os.remove(converted_tts_filename)
        
        if os.path.exists(os.path.join("weights", inference.model_name)):
            os.remove(os.path.join("weights", inference.model_name))
            
        if 'success' in output and output['success']:
            return output, output['file']
        else:
            return output, None
    else:
        return "Ocurrió un error durante la conversión", None