xJuuzouYTx
commited on
Commit
•
20d05ae
1
Parent(s):
63e4976
[REMOVE] binary files
Browse files- .gitignore +49 -0
- LICENSE +22 -0
- README copy.md +41 -0
- app.py +34 -0
- config.py +127 -0
- configs/32k.json +81 -0
- configs/32k_v2.json +46 -0
- configs/40k.json +79 -0
- configs/48k.json +81 -0
- configs/48k_v2.json +46 -0
- infer_pack/attentions.py +413 -0
- infer_pack/commons.py +164 -0
- infer_pack/models.py +1139 -0
- infer_pack/modules.py +518 -0
- infer_pack/modules/F0Predictor/DioF0Predictor.py +90 -0
- infer_pack/modules/F0Predictor/F0Predictor.py +16 -0
- infer_pack/modules/F0Predictor/HarvestF0Predictor.py +86 -0
- infer_pack/modules/F0Predictor/PMF0Predictor.py +97 -0
- infer_pack/modules/F0Predictor/__init__.py +0 -0
- infer_pack/transforms.py +208 -0
- infer_web.py +201 -0
- inference.py +233 -0
- myutils.py +92 -0
- requirements.txt +170 -0
- rmvpe.py +432 -0
- utils/__init__.py +0 -0
- utils/dependencies.py +175 -0
- utils/model.py +126 -0
- vc_infer_pipeline.py +656 -0
.gitignore
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
__pycache__
|
3 |
+
/TEMP
|
4 |
+
/audios/
|
5 |
+
/audio-outputs/
|
6 |
+
/LOGS
|
7 |
+
/RUNTIME
|
8 |
+
*.pyd
|
9 |
+
hubert_base.pt
|
10 |
+
/logs
|
11 |
+
/env
|
12 |
+
.venv
|
13 |
+
alexforkINSTALL.bat
|
14 |
+
Changelog_CN.md
|
15 |
+
Changelog_EN.md
|
16 |
+
Changelog_KO.md
|
17 |
+
difdep.py
|
18 |
+
EasierGUI.py
|
19 |
+
envfilescheck.bat
|
20 |
+
export_onnx.py
|
21 |
+
export_onnx_old.py
|
22 |
+
ffmpeg.exe
|
23 |
+
ffprobe.exe
|
24 |
+
Fixes/Launch_Tensorboard.bat
|
25 |
+
Fixes/LOCAL_CREPE_FIX.bat
|
26 |
+
Fixes/local_fixes.py
|
27 |
+
Fixes/tensor-launch.py
|
28 |
+
gui.py
|
29 |
+
infer-web — backup.py
|
30 |
+
infer-webbackup.py
|
31 |
+
install_easy_dependencies.py
|
32 |
+
install_easyGUI.bat
|
33 |
+
installstft.bat
|
34 |
+
Launch_Tensorboard.bat
|
35 |
+
listdepend.bat
|
36 |
+
LOCAL_CREPE_FIX.bat
|
37 |
+
local_fixes.py
|
38 |
+
oldinfer.py
|
39 |
+
onnx_inference_demo.py
|
40 |
+
Praat.exe
|
41 |
+
requirementsNEW.txt
|
42 |
+
rmvpe.pt
|
43 |
+
run_easiergui.bat
|
44 |
+
tensor-launch.py
|
45 |
+
values1.json
|
46 |
+
使用需遵守的协议-LICENSE.txt
|
47 |
+
trainset_preprocess_pipeline_print.py
|
48 |
+
.env
|
49 |
+
firebase_secrets.json
|
LICENSE
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 liujing04
|
4 |
+
Copyright (c) 2023 源文雨
|
5 |
+
|
6 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
7 |
+
of this software and associated documentation files (the "Software"), to deal
|
8 |
+
in the Software without restriction, including without limitation the rights
|
9 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10 |
+
copies of the Software, and to permit persons to whom the Software is
|
11 |
+
furnished to do so, subject to the following conditions:
|
12 |
+
|
13 |
+
The above copyright notice and this permission notice shall be included in all
|
14 |
+
copies or substantial portions of the Software.
|
15 |
+
|
16 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
17 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
18 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
19 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
20 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
21 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
22 |
+
SOFTWARE.
|
README copy.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[![Licence](https://img.shields.io/github/license/liujing04/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/%E4%BD%BF%E7%94%A8%E9%9C%80%E9%81%B5%E5%AE%88%E7%9A%84%E5%8D%8F%E8%AE%AE-LICENSE.txt)
|
2 |
+
|
3 |
+
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
|
4 |
+
|
5 |
+
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)]()
|
6 |
+
|
7 |
+
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/drive/1iWOLYE9znqT6XE5Rw2iETE19ZlqpziLx?usp=sharing)
|
8 |
+
|
9 |
+
# Instalación de dependencias 🖥️
|
10 |
+
Usando pip (python3.9.8 es recomendado)
|
11 |
+
```bash
|
12 |
+
python -m venv env
|
13 |
+
pip install -r requirements.txt
|
14 |
+
```
|
15 |
+
|
16 |
+
## Uso local
|
17 |
+
|
18 |
+
Aquí esta el listado de los archivos necesarios para correr el programa:
|
19 |
+
Puedes descargar los dos primeros desde [Huggingface space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/).
|
20 |
+
|
21 |
+
```bash
|
22 |
+
hubert_base.pt
|
23 |
+
|
24 |
+
rmvpe.pt
|
25 |
+
#Si estás usando windows, necesitas este archivo, omitelo si ffmpeg ffpbobe están instalados; los usuarios de ubuntu/debian pueden instalar estas dos librerías a través de apt install ffmpeg
|
26 |
+
|
27 |
+
./ffmpeg
|
28 |
+
|
29 |
+
./ffprobe
|
30 |
+
```
|
31 |
+
|
32 |
+
## Créditos
|
33 |
+
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
|
34 |
+
+ [VITS](https://github.com/jaywalnut310/vits)
|
35 |
+
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
|
36 |
+
+ [Gradio](https://github.com/gradio-app/gradio)
|
37 |
+
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
|
38 |
+
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
|
39 |
+
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
|
40 |
+
+ [Mangio FORK](https://github.com/Mangio621/Mangio-RVC-Fork)
|
41 |
+
|
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from inference import Inference
|
3 |
+
import os
|
4 |
+
|
5 |
+
def infer(model, f0_method, audio_file):
|
6 |
+
print("****", audio_file)
|
7 |
+
inference = Inference(
|
8 |
+
model_name=model,
|
9 |
+
f0_method=f0_method,
|
10 |
+
source_audio_path=audio_file,
|
11 |
+
output_file_name=os.path.join("./audio-outputs", os.path.basename(audio_file))
|
12 |
+
)
|
13 |
+
output = inference.run()
|
14 |
+
if 'success' in output and output['success']:
|
15 |
+
return output, output['file']
|
16 |
+
else:
|
17 |
+
return
|
18 |
+
|
19 |
+
with gr.Blocks() as app:
|
20 |
+
gr.HTML("<h1> Simple RVC Inference - by Juuxn 💻 </h1>")
|
21 |
+
model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Url del modelo", show_label=True)
|
22 |
+
audio_path = gr.Audio(label="Archivo de audio", show_label=True, type="filepath", )
|
23 |
+
f0_method = gr.Dropdown(choices=["harvest", "pm", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny", "rmvpe"],
|
24 |
+
value="harvest",
|
25 |
+
label="Algoritmo", show_label=True)
|
26 |
+
# Salida
|
27 |
+
with gr.Row():
|
28 |
+
vc_output1 = gr.Textbox(label="Salida")
|
29 |
+
vc_output2 = gr.Audio(label="Audio de salida")
|
30 |
+
|
31 |
+
btn = gr.Button(value="Convertir")
|
32 |
+
btn.click(infer, inputs=[model_url, f0_method, audio_path], outputs=[vc_output1, vc_output2])
|
33 |
+
|
34 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
config.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
from multiprocessing import cpu_count
|
6 |
+
|
7 |
+
global usefp16
|
8 |
+
usefp16 = False
|
9 |
+
|
10 |
+
|
11 |
+
def use_fp32_config():
|
12 |
+
usefp16 = False
|
13 |
+
device_capability = 0
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
device = torch.device("cuda:0") # Assuming you have only one GPU (index 0).
|
16 |
+
device_capability = torch.cuda.get_device_capability(device)[0]
|
17 |
+
if device_capability >= 7:
|
18 |
+
usefp16 = True
|
19 |
+
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
20 |
+
with open(f"configs/{config_file}", "r") as d:
|
21 |
+
data = json.load(d)
|
22 |
+
|
23 |
+
if "train" in data and "fp16_run" in data["train"]:
|
24 |
+
data["train"]["fp16_run"] = True
|
25 |
+
|
26 |
+
with open(f"configs/{config_file}", "w") as d:
|
27 |
+
json.dump(data, d, indent=4)
|
28 |
+
|
29 |
+
print(f"Set fp16_run to true in {config_file}")
|
30 |
+
|
31 |
+
else:
|
32 |
+
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
33 |
+
with open(f"configs/{config_file}", "r") as f:
|
34 |
+
data = json.load(f)
|
35 |
+
|
36 |
+
if "train" in data and "fp16_run" in data["train"]:
|
37 |
+
data["train"]["fp16_run"] = False
|
38 |
+
|
39 |
+
with open(f"configs/{config_file}", "w") as d:
|
40 |
+
json.dump(data, d, indent=4)
|
41 |
+
|
42 |
+
print(f"Set fp16_run to false in {config_file}")
|
43 |
+
else:
|
44 |
+
print(
|
45 |
+
"CUDA is not available. Make sure you have an NVIDIA GPU and CUDA installed."
|
46 |
+
)
|
47 |
+
return (usefp16, device_capability)
|
48 |
+
|
49 |
+
|
50 |
+
class Config:
|
51 |
+
def __init__(self):
|
52 |
+
self.device = "cuda:0"
|
53 |
+
self.is_half = True
|
54 |
+
self.n_cpu = 0
|
55 |
+
self.gpu_name = None
|
56 |
+
self.gpu_mem = None
|
57 |
+
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
58 |
+
|
59 |
+
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
60 |
+
# check `getattr` and try it for compatibility
|
61 |
+
@staticmethod
|
62 |
+
def has_mps() -> bool:
|
63 |
+
if not torch.backends.mps.is_available():
|
64 |
+
return False
|
65 |
+
try:
|
66 |
+
torch.zeros(1).to(torch.device("mps"))
|
67 |
+
return True
|
68 |
+
except Exception:
|
69 |
+
return False
|
70 |
+
|
71 |
+
def device_config(self) -> tuple:
|
72 |
+
if torch.cuda.is_available():
|
73 |
+
i_device = int(self.device.split(":")[-1])
|
74 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
75 |
+
if (
|
76 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
77 |
+
or "P40" in self.gpu_name.upper()
|
78 |
+
or "1060" in self.gpu_name
|
79 |
+
or "1070" in self.gpu_name
|
80 |
+
or "1080" in self.gpu_name
|
81 |
+
):
|
82 |
+
print("Found GPU", self.gpu_name, ", force to fp32")
|
83 |
+
self.is_half = False
|
84 |
+
else:
|
85 |
+
print("Found GPU", self.gpu_name)
|
86 |
+
use_fp32_config()
|
87 |
+
self.gpu_mem = int(
|
88 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
89 |
+
/ 1024
|
90 |
+
/ 1024
|
91 |
+
/ 1024
|
92 |
+
+ 0.4
|
93 |
+
)
|
94 |
+
elif self.has_mps():
|
95 |
+
print("No supported Nvidia GPU found, use MPS instead")
|
96 |
+
self.device = "mps"
|
97 |
+
self.is_half = False
|
98 |
+
use_fp32_config()
|
99 |
+
else:
|
100 |
+
print("No supported Nvidia GPU found, use CPU instead")
|
101 |
+
self.device = "cpu"
|
102 |
+
self.is_half = False
|
103 |
+
use_fp32_config()
|
104 |
+
|
105 |
+
if self.n_cpu == 0:
|
106 |
+
self.n_cpu = cpu_count()
|
107 |
+
|
108 |
+
if self.is_half:
|
109 |
+
# 6G显存配置
|
110 |
+
x_pad = 3
|
111 |
+
x_query = 10
|
112 |
+
x_center = 60
|
113 |
+
x_max = 65
|
114 |
+
else:
|
115 |
+
# 5G显存配置
|
116 |
+
x_pad = 1
|
117 |
+
x_query = 6
|
118 |
+
x_center = 38
|
119 |
+
x_max = 41
|
120 |
+
|
121 |
+
if self.gpu_mem != None and self.gpu_mem <= 4:
|
122 |
+
x_pad = 1
|
123 |
+
x_query = 5
|
124 |
+
x_center = 30
|
125 |
+
x_max = 32
|
126 |
+
|
127 |
+
return x_pad, x_query, x_center, x_max
|
configs/32k.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 0.0001,
|
7 |
+
"betas": [
|
8 |
+
0.8,
|
9 |
+
0.99
|
10 |
+
],
|
11 |
+
"eps": 1e-09,
|
12 |
+
"batch_size": 4,
|
13 |
+
"fp16_run": true,
|
14 |
+
"lr_decay": 0.999875,
|
15 |
+
"segment_size": 12800,
|
16 |
+
"init_lr_ratio": 1,
|
17 |
+
"warmup_epochs": 0,
|
18 |
+
"c_mel": 45,
|
19 |
+
"c_kl": 1.0
|
20 |
+
},
|
21 |
+
"data": {
|
22 |
+
"max_wav_value": 32768.0,
|
23 |
+
"sampling_rate": 32000,
|
24 |
+
"filter_length": 1024,
|
25 |
+
"hop_length": 320,
|
26 |
+
"win_length": 1024,
|
27 |
+
"n_mel_channels": 80,
|
28 |
+
"mel_fmin": 0.0,
|
29 |
+
"mel_fmax": null
|
30 |
+
},
|
31 |
+
"model": {
|
32 |
+
"inter_channels": 192,
|
33 |
+
"hidden_channels": 192,
|
34 |
+
"filter_channels": 768,
|
35 |
+
"n_heads": 2,
|
36 |
+
"n_layers": 6,
|
37 |
+
"kernel_size": 3,
|
38 |
+
"p_dropout": 0,
|
39 |
+
"resblock": "1",
|
40 |
+
"resblock_kernel_sizes": [
|
41 |
+
3,
|
42 |
+
7,
|
43 |
+
11
|
44 |
+
],
|
45 |
+
"resblock_dilation_sizes": [
|
46 |
+
[
|
47 |
+
1,
|
48 |
+
3,
|
49 |
+
5
|
50 |
+
],
|
51 |
+
[
|
52 |
+
1,
|
53 |
+
3,
|
54 |
+
5
|
55 |
+
],
|
56 |
+
[
|
57 |
+
1,
|
58 |
+
3,
|
59 |
+
5
|
60 |
+
]
|
61 |
+
],
|
62 |
+
"upsample_rates": [
|
63 |
+
10,
|
64 |
+
4,
|
65 |
+
2,
|
66 |
+
2,
|
67 |
+
2
|
68 |
+
],
|
69 |
+
"upsample_initial_channel": 512,
|
70 |
+
"upsample_kernel_sizes": [
|
71 |
+
16,
|
72 |
+
16,
|
73 |
+
4,
|
74 |
+
4,
|
75 |
+
4
|
76 |
+
],
|
77 |
+
"use_spectral_norm": false,
|
78 |
+
"gin_channels": 256,
|
79 |
+
"spk_embed_dim": 109
|
80 |
+
}
|
81 |
+
}
|
configs/32k_v2.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 32000,
|
21 |
+
"filter_length": 1024,
|
22 |
+
"hop_length": 320,
|
23 |
+
"win_length": 1024,
|
24 |
+
"n_mel_channels": 80,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,8,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [20,16,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/40k.json
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 0.0001,
|
7 |
+
"betas": [
|
8 |
+
0.8,
|
9 |
+
0.99
|
10 |
+
],
|
11 |
+
"eps": 1e-09,
|
12 |
+
"batch_size": 4,
|
13 |
+
"fp16_run": true,
|
14 |
+
"lr_decay": 0.999875,
|
15 |
+
"segment_size": 12800,
|
16 |
+
"init_lr_ratio": 1,
|
17 |
+
"warmup_epochs": 0,
|
18 |
+
"c_mel": 45,
|
19 |
+
"c_kl": 1.0
|
20 |
+
},
|
21 |
+
"data": {
|
22 |
+
"max_wav_value": 32768.0,
|
23 |
+
"sampling_rate": 40000,
|
24 |
+
"filter_length": 2048,
|
25 |
+
"hop_length": 400,
|
26 |
+
"win_length": 2048,
|
27 |
+
"n_mel_channels": 125,
|
28 |
+
"mel_fmin": 0.0,
|
29 |
+
"mel_fmax": null
|
30 |
+
},
|
31 |
+
"model": {
|
32 |
+
"inter_channels": 192,
|
33 |
+
"hidden_channels": 192,
|
34 |
+
"filter_channels": 768,
|
35 |
+
"n_heads": 2,
|
36 |
+
"n_layers": 6,
|
37 |
+
"kernel_size": 3,
|
38 |
+
"p_dropout": 0,
|
39 |
+
"resblock": "1",
|
40 |
+
"resblock_kernel_sizes": [
|
41 |
+
3,
|
42 |
+
7,
|
43 |
+
11
|
44 |
+
],
|
45 |
+
"resblock_dilation_sizes": [
|
46 |
+
[
|
47 |
+
1,
|
48 |
+
3,
|
49 |
+
5
|
50 |
+
],
|
51 |
+
[
|
52 |
+
1,
|
53 |
+
3,
|
54 |
+
5
|
55 |
+
],
|
56 |
+
[
|
57 |
+
1,
|
58 |
+
3,
|
59 |
+
5
|
60 |
+
]
|
61 |
+
],
|
62 |
+
"upsample_rates": [
|
63 |
+
10,
|
64 |
+
10,
|
65 |
+
2,
|
66 |
+
2
|
67 |
+
],
|
68 |
+
"upsample_initial_channel": 512,
|
69 |
+
"upsample_kernel_sizes": [
|
70 |
+
16,
|
71 |
+
16,
|
72 |
+
4,
|
73 |
+
4
|
74 |
+
],
|
75 |
+
"use_spectral_norm": false,
|
76 |
+
"gin_channels": 256,
|
77 |
+
"spk_embed_dim": 109
|
78 |
+
}
|
79 |
+
}
|
configs/48k.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 0.0001,
|
7 |
+
"betas": [
|
8 |
+
0.8,
|
9 |
+
0.99
|
10 |
+
],
|
11 |
+
"eps": 1e-09,
|
12 |
+
"batch_size": 4,
|
13 |
+
"fp16_run": true,
|
14 |
+
"lr_decay": 0.999875,
|
15 |
+
"segment_size": 11520,
|
16 |
+
"init_lr_ratio": 1,
|
17 |
+
"warmup_epochs": 0,
|
18 |
+
"c_mel": 45,
|
19 |
+
"c_kl": 1.0
|
20 |
+
},
|
21 |
+
"data": {
|
22 |
+
"max_wav_value": 32768.0,
|
23 |
+
"sampling_rate": 48000,
|
24 |
+
"filter_length": 2048,
|
25 |
+
"hop_length": 480,
|
26 |
+
"win_length": 2048,
|
27 |
+
"n_mel_channels": 128,
|
28 |
+
"mel_fmin": 0.0,
|
29 |
+
"mel_fmax": null
|
30 |
+
},
|
31 |
+
"model": {
|
32 |
+
"inter_channels": 192,
|
33 |
+
"hidden_channels": 192,
|
34 |
+
"filter_channels": 768,
|
35 |
+
"n_heads": 2,
|
36 |
+
"n_layers": 6,
|
37 |
+
"kernel_size": 3,
|
38 |
+
"p_dropout": 0,
|
39 |
+
"resblock": "1",
|
40 |
+
"resblock_kernel_sizes": [
|
41 |
+
3,
|
42 |
+
7,
|
43 |
+
11
|
44 |
+
],
|
45 |
+
"resblock_dilation_sizes": [
|
46 |
+
[
|
47 |
+
1,
|
48 |
+
3,
|
49 |
+
5
|
50 |
+
],
|
51 |
+
[
|
52 |
+
1,
|
53 |
+
3,
|
54 |
+
5
|
55 |
+
],
|
56 |
+
[
|
57 |
+
1,
|
58 |
+
3,
|
59 |
+
5
|
60 |
+
]
|
61 |
+
],
|
62 |
+
"upsample_rates": [
|
63 |
+
10,
|
64 |
+
6,
|
65 |
+
2,
|
66 |
+
2,
|
67 |
+
2
|
68 |
+
],
|
69 |
+
"upsample_initial_channel": 512,
|
70 |
+
"upsample_kernel_sizes": [
|
71 |
+
16,
|
72 |
+
16,
|
73 |
+
4,
|
74 |
+
4,
|
75 |
+
4
|
76 |
+
],
|
77 |
+
"use_spectral_norm": false,
|
78 |
+
"gin_channels": 256,
|
79 |
+
"spk_embed_dim": 109
|
80 |
+
}
|
81 |
+
}
|
configs/48k_v2.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 17280,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 48000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 480,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 128,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [12,10,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [24,20,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
infer_pack/attentions.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from infer_pack import commons
|
7 |
+
from infer_pack.modules import LayerNorm
|
8 |
+
|
9 |
+
class Encoder(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
hidden_channels,
|
13 |
+
filter_channels,
|
14 |
+
n_heads,
|
15 |
+
n_layers,
|
16 |
+
kernel_size=1,
|
17 |
+
p_dropout=0.0,
|
18 |
+
window_size=10,
|
19 |
+
**kwargs
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
self.hidden_channels = hidden_channels
|
23 |
+
self.filter_channels = filter_channels
|
24 |
+
self.n_heads = n_heads
|
25 |
+
self.n_layers = n_layers
|
26 |
+
self.kernel_size = kernel_size
|
27 |
+
self.p_dropout = p_dropout
|
28 |
+
self.window_size = window_size
|
29 |
+
|
30 |
+
self.drop = nn.Dropout(p_dropout)
|
31 |
+
self.attn_layers = nn.ModuleList()
|
32 |
+
self.norm_layers_1 = nn.ModuleList()
|
33 |
+
self.ffn_layers = nn.ModuleList()
|
34 |
+
self.norm_layers_2 = nn.ModuleList()
|
35 |
+
for i in range(self.n_layers):
|
36 |
+
self.attn_layers.append(
|
37 |
+
MultiHeadAttention(
|
38 |
+
hidden_channels,
|
39 |
+
hidden_channels,
|
40 |
+
n_heads,
|
41 |
+
p_dropout=p_dropout,
|
42 |
+
window_size=window_size,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
46 |
+
self.ffn_layers.append(
|
47 |
+
FFN(
|
48 |
+
hidden_channels,
|
49 |
+
hidden_channels,
|
50 |
+
filter_channels,
|
51 |
+
kernel_size,
|
52 |
+
p_dropout=p_dropout,
|
53 |
+
)
|
54 |
+
)
|
55 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
56 |
+
|
57 |
+
def forward(self, x, x_mask):
|
58 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
59 |
+
x = x * x_mask
|
60 |
+
for i in range(self.n_layers):
|
61 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
62 |
+
y = self.drop(y)
|
63 |
+
x = self.norm_layers_1[i](x + y)
|
64 |
+
|
65 |
+
y = self.ffn_layers[i](x, x_mask)
|
66 |
+
y = self.drop(y)
|
67 |
+
x = self.norm_layers_2[i](x + y)
|
68 |
+
x = x * x_mask
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
class Decoder(nn.Module):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
hidden_channels,
|
76 |
+
filter_channels,
|
77 |
+
n_heads,
|
78 |
+
n_layers,
|
79 |
+
kernel_size=1,
|
80 |
+
p_dropout=0.0,
|
81 |
+
proximal_bias=False,
|
82 |
+
proximal_init=True,
|
83 |
+
**kwargs
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
self.hidden_channels = hidden_channels
|
87 |
+
self.filter_channels = filter_channels
|
88 |
+
self.n_heads = n_heads
|
89 |
+
self.n_layers = n_layers
|
90 |
+
self.kernel_size = kernel_size
|
91 |
+
self.p_dropout = p_dropout
|
92 |
+
self.proximal_bias = proximal_bias
|
93 |
+
self.proximal_init = proximal_init
|
94 |
+
|
95 |
+
self.drop = nn.Dropout(p_dropout)
|
96 |
+
self.self_attn_layers = nn.ModuleList()
|
97 |
+
self.norm_layers_0 = nn.ModuleList()
|
98 |
+
self.encdec_attn_layers = nn.ModuleList()
|
99 |
+
self.norm_layers_1 = nn.ModuleList()
|
100 |
+
self.ffn_layers = nn.ModuleList()
|
101 |
+
self.norm_layers_2 = nn.ModuleList()
|
102 |
+
for i in range(self.n_layers):
|
103 |
+
self.self_attn_layers.append(
|
104 |
+
MultiHeadAttention(
|
105 |
+
hidden_channels,
|
106 |
+
hidden_channels,
|
107 |
+
n_heads,
|
108 |
+
p_dropout=p_dropout,
|
109 |
+
proximal_bias=proximal_bias,
|
110 |
+
proximal_init=proximal_init,
|
111 |
+
)
|
112 |
+
)
|
113 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
114 |
+
self.encdec_attn_layers.append(
|
115 |
+
MultiHeadAttention(
|
116 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
117 |
+
)
|
118 |
+
)
|
119 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
120 |
+
self.ffn_layers.append(
|
121 |
+
FFN(
|
122 |
+
hidden_channels,
|
123 |
+
hidden_channels,
|
124 |
+
filter_channels,
|
125 |
+
kernel_size,
|
126 |
+
p_dropout=p_dropout,
|
127 |
+
causal=True,
|
128 |
+
)
|
129 |
+
)
|
130 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
131 |
+
|
132 |
+
def forward(self, x, x_mask, h, h_mask):
|
133 |
+
"""
|
134 |
+
x: decoder input
|
135 |
+
h: encoder output
|
136 |
+
"""
|
137 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
138 |
+
device=x.device, dtype=x.dtype
|
139 |
+
)
|
140 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
141 |
+
x = x * x_mask
|
142 |
+
for i in range(self.n_layers):
|
143 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
144 |
+
y = self.drop(y)
|
145 |
+
x = self.norm_layers_0[i](x + y)
|
146 |
+
|
147 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
148 |
+
y = self.drop(y)
|
149 |
+
x = self.norm_layers_1[i](x + y)
|
150 |
+
|
151 |
+
y = self.ffn_layers[i](x, x_mask)
|
152 |
+
y = self.drop(y)
|
153 |
+
x = self.norm_layers_2[i](x + y)
|
154 |
+
x = x * x_mask
|
155 |
+
return x
|
156 |
+
|
157 |
+
|
158 |
+
class MultiHeadAttention(nn.Module):
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
channels,
|
162 |
+
out_channels,
|
163 |
+
n_heads,
|
164 |
+
p_dropout=0.0,
|
165 |
+
window_size=None,
|
166 |
+
heads_share=True,
|
167 |
+
block_length=None,
|
168 |
+
proximal_bias=False,
|
169 |
+
proximal_init=False,
|
170 |
+
):
|
171 |
+
super().__init__()
|
172 |
+
assert channels % n_heads == 0
|
173 |
+
|
174 |
+
self.channels = channels
|
175 |
+
self.out_channels = out_channels
|
176 |
+
self.n_heads = n_heads
|
177 |
+
self.p_dropout = p_dropout
|
178 |
+
self.window_size = window_size
|
179 |
+
self.heads_share = heads_share
|
180 |
+
self.block_length = block_length
|
181 |
+
self.proximal_bias = proximal_bias
|
182 |
+
self.proximal_init = proximal_init
|
183 |
+
self.attn = None
|
184 |
+
|
185 |
+
self.k_channels = channels // n_heads
|
186 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
187 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
188 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
189 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
190 |
+
self.drop = nn.Dropout(p_dropout)
|
191 |
+
|
192 |
+
if window_size is not None:
|
193 |
+
n_heads_rel = 1 if heads_share else n_heads
|
194 |
+
rel_stddev = self.k_channels**-0.5
|
195 |
+
self.emb_rel_k = nn.Parameter(
|
196 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
197 |
+
* rel_stddev
|
198 |
+
)
|
199 |
+
self.emb_rel_v = nn.Parameter(
|
200 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
201 |
+
* rel_stddev
|
202 |
+
)
|
203 |
+
|
204 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
205 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
206 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
207 |
+
if proximal_init:
|
208 |
+
with torch.no_grad():
|
209 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
210 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
211 |
+
|
212 |
+
def forward(self, x, c, attn_mask=None):
|
213 |
+
q = self.conv_q(x)
|
214 |
+
k = self.conv_k(c)
|
215 |
+
v = self.conv_v(c)
|
216 |
+
|
217 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
218 |
+
|
219 |
+
x = self.conv_o(x)
|
220 |
+
return x
|
221 |
+
|
222 |
+
def attention(self, query, key, value, mask=None):
|
223 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
224 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
225 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
226 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
227 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
228 |
+
|
229 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
230 |
+
if self.window_size is not None:
|
231 |
+
assert (
|
232 |
+
t_s == t_t
|
233 |
+
), "Relative attention is only available for self-attention."
|
234 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
235 |
+
rel_logits = self._matmul_with_relative_keys(
|
236 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
237 |
+
)
|
238 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
239 |
+
scores = scores + scores_local
|
240 |
+
if self.proximal_bias:
|
241 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
242 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
243 |
+
device=scores.device, dtype=scores.dtype
|
244 |
+
)
|
245 |
+
if mask is not None:
|
246 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
247 |
+
if self.block_length is not None:
|
248 |
+
assert (
|
249 |
+
t_s == t_t
|
250 |
+
), "Local attention is only available for self-attention."
|
251 |
+
block_mask = (
|
252 |
+
torch.ones_like(scores)
|
253 |
+
.triu(-self.block_length)
|
254 |
+
.tril(self.block_length)
|
255 |
+
)
|
256 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
257 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
258 |
+
p_attn = self.drop(p_attn)
|
259 |
+
output = torch.matmul(p_attn, value)
|
260 |
+
if self.window_size is not None:
|
261 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
262 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
263 |
+
self.emb_rel_v, t_s
|
264 |
+
)
|
265 |
+
output = output + self._matmul_with_relative_values(
|
266 |
+
relative_weights, value_relative_embeddings
|
267 |
+
)
|
268 |
+
output = (
|
269 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
270 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
271 |
+
return output, p_attn
|
272 |
+
|
273 |
+
def _matmul_with_relative_values(self, x, y):
|
274 |
+
"""
|
275 |
+
x: [b, h, l, m]
|
276 |
+
y: [h or 1, m, d]
|
277 |
+
ret: [b, h, l, d]
|
278 |
+
"""
|
279 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
280 |
+
return ret
|
281 |
+
|
282 |
+
def _matmul_with_relative_keys(self, x, y):
|
283 |
+
"""
|
284 |
+
x: [b, h, l, d]
|
285 |
+
y: [h or 1, m, d]
|
286 |
+
ret: [b, h, l, m]
|
287 |
+
"""
|
288 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
289 |
+
return ret
|
290 |
+
|
291 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
292 |
+
max_relative_position = 2 * self.window_size + 1
|
293 |
+
# Pad first before slice to avoid using cond ops.
|
294 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
295 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
296 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
297 |
+
if pad_length > 0:
|
298 |
+
padded_relative_embeddings = F.pad(
|
299 |
+
relative_embeddings,
|
300 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
301 |
+
)
|
302 |
+
else:
|
303 |
+
padded_relative_embeddings = relative_embeddings
|
304 |
+
used_relative_embeddings = padded_relative_embeddings[
|
305 |
+
:, slice_start_position:slice_end_position
|
306 |
+
]
|
307 |
+
return used_relative_embeddings
|
308 |
+
|
309 |
+
def _relative_position_to_absolute_position(self, x):
|
310 |
+
"""
|
311 |
+
x: [b, h, l, 2*l-1]
|
312 |
+
ret: [b, h, l, l]
|
313 |
+
"""
|
314 |
+
batch, heads, length, _ = x.size()
|
315 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
316 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
317 |
+
|
318 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
319 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
320 |
+
x_flat = F.pad(
|
321 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
322 |
+
)
|
323 |
+
|
324 |
+
# Reshape and slice out the padded elements.
|
325 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
326 |
+
:, :, :length, length - 1 :
|
327 |
+
]
|
328 |
+
return x_final
|
329 |
+
|
330 |
+
def _absolute_position_to_relative_position(self, x):
|
331 |
+
"""
|
332 |
+
x: [b, h, l, l]
|
333 |
+
ret: [b, h, l, 2*l-1]
|
334 |
+
"""
|
335 |
+
batch, heads, length, _ = x.size()
|
336 |
+
# padd along column
|
337 |
+
x = F.pad(
|
338 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
339 |
+
)
|
340 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
341 |
+
# add 0's in the beginning that will skew the elements after reshape
|
342 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
343 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
344 |
+
return x_final
|
345 |
+
|
346 |
+
def _attention_bias_proximal(self, length):
|
347 |
+
"""Bias for self-attention to encourage attention to close positions.
|
348 |
+
Args:
|
349 |
+
length: an integer scalar.
|
350 |
+
Returns:
|
351 |
+
a Tensor with shape [1, 1, length, length]
|
352 |
+
"""
|
353 |
+
r = torch.arange(length, dtype=torch.float32)
|
354 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
355 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
356 |
+
|
357 |
+
|
358 |
+
class FFN(nn.Module):
|
359 |
+
def __init__(
|
360 |
+
self,
|
361 |
+
in_channels,
|
362 |
+
out_channels,
|
363 |
+
filter_channels,
|
364 |
+
kernel_size,
|
365 |
+
p_dropout=0.0,
|
366 |
+
activation=None,
|
367 |
+
causal=False,
|
368 |
+
):
|
369 |
+
super().__init__()
|
370 |
+
self.in_channels = in_channels
|
371 |
+
self.out_channels = out_channels
|
372 |
+
self.filter_channels = filter_channels
|
373 |
+
self.kernel_size = kernel_size
|
374 |
+
self.p_dropout = p_dropout
|
375 |
+
self.activation = activation
|
376 |
+
self.causal = causal
|
377 |
+
|
378 |
+
if causal:
|
379 |
+
self.padding = self._causal_padding
|
380 |
+
else:
|
381 |
+
self.padding = self._same_padding
|
382 |
+
|
383 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
384 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
385 |
+
self.drop = nn.Dropout(p_dropout)
|
386 |
+
|
387 |
+
def forward(self, x, x_mask):
|
388 |
+
x = self.conv_1(self.padding(x * x_mask))
|
389 |
+
if self.activation == "gelu":
|
390 |
+
x = x * torch.sigmoid(1.702 * x)
|
391 |
+
else:
|
392 |
+
x = torch.relu(x)
|
393 |
+
x = self.drop(x)
|
394 |
+
x = self.conv_2(self.padding(x * x_mask))
|
395 |
+
return x * x_mask
|
396 |
+
|
397 |
+
def _causal_padding(self, x):
|
398 |
+
if self.kernel_size == 1:
|
399 |
+
return x
|
400 |
+
pad_l = self.kernel_size - 1
|
401 |
+
pad_r = 0
|
402 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
403 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
404 |
+
return x
|
405 |
+
|
406 |
+
def _same_padding(self, x):
|
407 |
+
if self.kernel_size == 1:
|
408 |
+
return x
|
409 |
+
pad_l = (self.kernel_size - 1) // 2
|
410 |
+
pad_r = self.kernel_size // 2
|
411 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
412 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
413 |
+
return x
|
infer_pack/commons.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def init_weights(m, mean=0.0, std=0.01):
|
7 |
+
classname = m.__class__.__name__
|
8 |
+
if classname.find("Conv") != -1:
|
9 |
+
m.weight.data.normal_(mean, std)
|
10 |
+
|
11 |
+
|
12 |
+
def get_padding(kernel_size, dilation=1):
|
13 |
+
return int((kernel_size * dilation - dilation) / 2)
|
14 |
+
|
15 |
+
|
16 |
+
def convert_pad_shape(pad_shape):
|
17 |
+
l = pad_shape[::-1]
|
18 |
+
pad_shape = [item for sublist in l for item in sublist]
|
19 |
+
return pad_shape
|
20 |
+
|
21 |
+
|
22 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
23 |
+
"""KL(P||Q)"""
|
24 |
+
kl = (logs_q - logs_p) - 0.5
|
25 |
+
kl += (
|
26 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
27 |
+
)
|
28 |
+
return kl
|
29 |
+
|
30 |
+
|
31 |
+
def rand_gumbel(shape):
|
32 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
33 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
34 |
+
return -torch.log(-torch.log(uniform_samples))
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel_like(x):
|
38 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
39 |
+
return g
|
40 |
+
|
41 |
+
|
42 |
+
def slice_segments(x, ids_str, segment_size=4):
|
43 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
44 |
+
for i in range(x.size(0)):
|
45 |
+
idx_str = ids_str[i]
|
46 |
+
idx_end = idx_str + segment_size
|
47 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
48 |
+
return ret
|
49 |
+
|
50 |
+
|
51 |
+
def slice_segments2(x, ids_str, segment_size=4):
|
52 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
53 |
+
for i in range(x.size(0)):
|
54 |
+
idx_str = ids_str[i]
|
55 |
+
idx_end = idx_str + segment_size
|
56 |
+
ret[i] = x[i, idx_str:idx_end]
|
57 |
+
return ret
|
58 |
+
|
59 |
+
|
60 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
61 |
+
b, d, t = x.size()
|
62 |
+
if x_lengths is None:
|
63 |
+
x_lengths = t
|
64 |
+
ids_str_max = x_lengths - segment_size + 1
|
65 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
66 |
+
ret = slice_segments(x, ids_str, segment_size)
|
67 |
+
return ret, ids_str
|
68 |
+
|
69 |
+
|
70 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
71 |
+
position = torch.arange(length, dtype=torch.float)
|
72 |
+
num_timescales = channels // 2
|
73 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
74 |
+
num_timescales - 1
|
75 |
+
)
|
76 |
+
inv_timescales = min_timescale * torch.exp(
|
77 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
78 |
+
)
|
79 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
80 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
81 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
82 |
+
signal = signal.view(1, channels, length)
|
83 |
+
return signal
|
84 |
+
|
85 |
+
|
86 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
87 |
+
b, channels, length = x.size()
|
88 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
89 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
90 |
+
|
91 |
+
|
92 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
93 |
+
b, channels, length = x.size()
|
94 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
95 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
96 |
+
|
97 |
+
|
98 |
+
def subsequent_mask(length):
|
99 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
100 |
+
return mask
|
101 |
+
|
102 |
+
|
103 |
+
@torch.jit.script
|
104 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
105 |
+
n_channels_int = n_channels[0]
|
106 |
+
in_act = input_a + input_b
|
107 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
108 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
109 |
+
acts = t_act * s_act
|
110 |
+
return acts
|
111 |
+
|
112 |
+
|
113 |
+
def convert_pad_shape(pad_shape):
|
114 |
+
l = pad_shape[::-1]
|
115 |
+
pad_shape = [item for sublist in l for item in sublist]
|
116 |
+
return pad_shape
|
117 |
+
|
118 |
+
|
119 |
+
def shift_1d(x):
|
120 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
def sequence_mask(length, max_length=None):
|
125 |
+
if max_length is None:
|
126 |
+
max_length = length.max()
|
127 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
128 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
129 |
+
|
130 |
+
|
131 |
+
def generate_path(duration, mask):
|
132 |
+
"""
|
133 |
+
duration: [b, 1, t_x]
|
134 |
+
mask: [b, 1, t_y, t_x]
|
135 |
+
"""
|
136 |
+
device = duration.device
|
137 |
+
|
138 |
+
b, _, t_y, t_x = mask.shape
|
139 |
+
cum_duration = torch.cumsum(duration, -1)
|
140 |
+
|
141 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
142 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
143 |
+
path = path.view(b, t_x, t_y)
|
144 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
145 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
146 |
+
return path
|
147 |
+
|
148 |
+
|
149 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
150 |
+
if isinstance(parameters, torch.Tensor):
|
151 |
+
parameters = [parameters]
|
152 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
153 |
+
norm_type = float(norm_type)
|
154 |
+
if clip_value is not None:
|
155 |
+
clip_value = float(clip_value)
|
156 |
+
|
157 |
+
total_norm = 0
|
158 |
+
for p in parameters:
|
159 |
+
param_norm = p.grad.data.norm(norm_type)
|
160 |
+
total_norm += param_norm.item() ** norm_type
|
161 |
+
if clip_value is not None:
|
162 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
163 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
164 |
+
return total_norm
|
infer_pack/models.py
ADDED
@@ -0,0 +1,1139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from infer_pack import modules
|
6 |
+
from infer_pack import attentions
|
7 |
+
from infer_pack import commons
|
8 |
+
from infer_pack.commons import init_weights, get_padding
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
11 |
+
from infer_pack.commons import init_weights
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
class TextEncoder256(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
out_channels,
|
18 |
+
hidden_channels,
|
19 |
+
filter_channels,
|
20 |
+
n_heads,
|
21 |
+
n_layers,
|
22 |
+
kernel_size,
|
23 |
+
p_dropout,
|
24 |
+
f0=True,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
self.out_channels = out_channels
|
28 |
+
self.hidden_channels = hidden_channels
|
29 |
+
self.filter_channels = filter_channels
|
30 |
+
self.n_heads = n_heads
|
31 |
+
self.n_layers = n_layers
|
32 |
+
self.kernel_size = kernel_size
|
33 |
+
self.p_dropout = p_dropout
|
34 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
35 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
36 |
+
if f0 == True:
|
37 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
38 |
+
self.encoder = attentions.Encoder(
|
39 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
40 |
+
)
|
41 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
42 |
+
|
43 |
+
def forward(self, phone, pitch, lengths):
|
44 |
+
if pitch == None:
|
45 |
+
x = self.emb_phone(phone)
|
46 |
+
else:
|
47 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
48 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
49 |
+
x = self.lrelu(x)
|
50 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
51 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
52 |
+
x.dtype
|
53 |
+
)
|
54 |
+
x = self.encoder(x * x_mask, x_mask)
|
55 |
+
stats = self.proj(x) * x_mask
|
56 |
+
|
57 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
58 |
+
return m, logs, x_mask
|
59 |
+
|
60 |
+
|
61 |
+
class TextEncoder768(nn.Module):
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
out_channels,
|
65 |
+
hidden_channels,
|
66 |
+
filter_channels,
|
67 |
+
n_heads,
|
68 |
+
n_layers,
|
69 |
+
kernel_size,
|
70 |
+
p_dropout,
|
71 |
+
f0=True,
|
72 |
+
):
|
73 |
+
super().__init__()
|
74 |
+
self.out_channels = out_channels
|
75 |
+
self.hidden_channels = hidden_channels
|
76 |
+
self.filter_channels = filter_channels
|
77 |
+
self.n_heads = n_heads
|
78 |
+
self.n_layers = n_layers
|
79 |
+
self.kernel_size = kernel_size
|
80 |
+
self.p_dropout = p_dropout
|
81 |
+
self.emb_phone = nn.Linear(768, hidden_channels)
|
82 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
83 |
+
if f0 == True:
|
84 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
85 |
+
self.encoder = attentions.Encoder(
|
86 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
87 |
+
)
|
88 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
89 |
+
|
90 |
+
def forward(self, phone, pitch, lengths):
|
91 |
+
if pitch == None:
|
92 |
+
x = self.emb_phone(phone)
|
93 |
+
else:
|
94 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
95 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
96 |
+
x = self.lrelu(x)
|
97 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
98 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
99 |
+
x.dtype
|
100 |
+
)
|
101 |
+
x = self.encoder(x * x_mask, x_mask)
|
102 |
+
stats = self.proj(x) * x_mask
|
103 |
+
|
104 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
105 |
+
return m, logs, x_mask
|
106 |
+
|
107 |
+
|
108 |
+
class ResidualCouplingBlock(nn.Module):
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
channels,
|
112 |
+
hidden_channels,
|
113 |
+
kernel_size,
|
114 |
+
dilation_rate,
|
115 |
+
n_layers,
|
116 |
+
n_flows=4,
|
117 |
+
gin_channels=0,
|
118 |
+
):
|
119 |
+
super().__init__()
|
120 |
+
self.channels = channels
|
121 |
+
self.hidden_channels = hidden_channels
|
122 |
+
self.kernel_size = kernel_size
|
123 |
+
self.dilation_rate = dilation_rate
|
124 |
+
self.n_layers = n_layers
|
125 |
+
self.n_flows = n_flows
|
126 |
+
self.gin_channels = gin_channels
|
127 |
+
|
128 |
+
self.flows = nn.ModuleList()
|
129 |
+
for i in range(n_flows):
|
130 |
+
self.flows.append(
|
131 |
+
modules.ResidualCouplingLayer(
|
132 |
+
channels,
|
133 |
+
hidden_channels,
|
134 |
+
kernel_size,
|
135 |
+
dilation_rate,
|
136 |
+
n_layers,
|
137 |
+
gin_channels=gin_channels,
|
138 |
+
mean_only=True,
|
139 |
+
)
|
140 |
+
)
|
141 |
+
self.flows.append(modules.Flip())
|
142 |
+
|
143 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
144 |
+
if not reverse:
|
145 |
+
for flow in self.flows:
|
146 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
147 |
+
else:
|
148 |
+
for flow in reversed(self.flows):
|
149 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
150 |
+
return x
|
151 |
+
|
152 |
+
def remove_weight_norm(self):
|
153 |
+
for i in range(self.n_flows):
|
154 |
+
self.flows[i * 2].remove_weight_norm()
|
155 |
+
|
156 |
+
|
157 |
+
class PosteriorEncoder(nn.Module):
|
158 |
+
def __init__(
|
159 |
+
self,
|
160 |
+
in_channels,
|
161 |
+
out_channels,
|
162 |
+
hidden_channels,
|
163 |
+
kernel_size,
|
164 |
+
dilation_rate,
|
165 |
+
n_layers,
|
166 |
+
gin_channels=0,
|
167 |
+
):
|
168 |
+
super().__init__()
|
169 |
+
self.in_channels = in_channels
|
170 |
+
self.out_channels = out_channels
|
171 |
+
self.hidden_channels = hidden_channels
|
172 |
+
self.kernel_size = kernel_size
|
173 |
+
self.dilation_rate = dilation_rate
|
174 |
+
self.n_layers = n_layers
|
175 |
+
self.gin_channels = gin_channels
|
176 |
+
|
177 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
178 |
+
self.enc = modules.WN(
|
179 |
+
hidden_channels,
|
180 |
+
kernel_size,
|
181 |
+
dilation_rate,
|
182 |
+
n_layers,
|
183 |
+
gin_channels=gin_channels,
|
184 |
+
)
|
185 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
186 |
+
|
187 |
+
def forward(self, x, x_lengths, g=None):
|
188 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
189 |
+
x.dtype
|
190 |
+
)
|
191 |
+
x = self.pre(x) * x_mask
|
192 |
+
x = self.enc(x, x_mask, g=g)
|
193 |
+
stats = self.proj(x) * x_mask
|
194 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
195 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
196 |
+
return z, m, logs, x_mask
|
197 |
+
|
198 |
+
def remove_weight_norm(self):
|
199 |
+
self.enc.remove_weight_norm()
|
200 |
+
|
201 |
+
|
202 |
+
class Generator(torch.nn.Module):
|
203 |
+
def __init__(
|
204 |
+
self,
|
205 |
+
initial_channel,
|
206 |
+
resblock,
|
207 |
+
resblock_kernel_sizes,
|
208 |
+
resblock_dilation_sizes,
|
209 |
+
upsample_rates,
|
210 |
+
upsample_initial_channel,
|
211 |
+
upsample_kernel_sizes,
|
212 |
+
gin_channels=0,
|
213 |
+
):
|
214 |
+
super(Generator, self).__init__()
|
215 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
216 |
+
self.num_upsamples = len(upsample_rates)
|
217 |
+
self.conv_pre = Conv1d(
|
218 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
219 |
+
)
|
220 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
221 |
+
|
222 |
+
self.ups = nn.ModuleList()
|
223 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
224 |
+
self.ups.append(
|
225 |
+
weight_norm(
|
226 |
+
ConvTranspose1d(
|
227 |
+
upsample_initial_channel // (2**i),
|
228 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
229 |
+
k,
|
230 |
+
u,
|
231 |
+
padding=(k - u) // 2,
|
232 |
+
)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
|
236 |
+
self.resblocks = nn.ModuleList()
|
237 |
+
for i in range(len(self.ups)):
|
238 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
239 |
+
for j, (k, d) in enumerate(
|
240 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
241 |
+
):
|
242 |
+
self.resblocks.append(resblock(ch, k, d))
|
243 |
+
|
244 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
245 |
+
self.ups.apply(init_weights)
|
246 |
+
|
247 |
+
if gin_channels != 0:
|
248 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
249 |
+
|
250 |
+
def forward(self, x, g=None):
|
251 |
+
x = self.conv_pre(x)
|
252 |
+
if g is not None:
|
253 |
+
x = x + self.cond(g)
|
254 |
+
|
255 |
+
for i in range(self.num_upsamples):
|
256 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
257 |
+
x = self.ups[i](x)
|
258 |
+
xs = None
|
259 |
+
for j in range(self.num_kernels):
|
260 |
+
if xs is None:
|
261 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
262 |
+
else:
|
263 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
264 |
+
x = xs / self.num_kernels
|
265 |
+
x = F.leaky_relu(x)
|
266 |
+
x = self.conv_post(x)
|
267 |
+
x = torch.tanh(x)
|
268 |
+
|
269 |
+
return x
|
270 |
+
|
271 |
+
def remove_weight_norm(self):
|
272 |
+
for l in self.ups:
|
273 |
+
remove_weight_norm(l)
|
274 |
+
for l in self.resblocks:
|
275 |
+
l.remove_weight_norm()
|
276 |
+
|
277 |
+
|
278 |
+
class SineGen(torch.nn.Module):
|
279 |
+
"""Definition of sine generator
|
280 |
+
SineGen(samp_rate, harmonic_num = 0,
|
281 |
+
sine_amp = 0.1, noise_std = 0.003,
|
282 |
+
voiced_threshold = 0,
|
283 |
+
flag_for_pulse=False)
|
284 |
+
samp_rate: sampling rate in Hz
|
285 |
+
harmonic_num: number of harmonic overtones (default 0)
|
286 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
287 |
+
noise_std: std of Gaussian noise (default 0.003)
|
288 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
289 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
290 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
291 |
+
segment is always sin(np.pi) or cos(0)
|
292 |
+
"""
|
293 |
+
|
294 |
+
def __init__(
|
295 |
+
self,
|
296 |
+
samp_rate,
|
297 |
+
harmonic_num=0,
|
298 |
+
sine_amp=0.1,
|
299 |
+
noise_std=0.003,
|
300 |
+
voiced_threshold=0,
|
301 |
+
flag_for_pulse=False,
|
302 |
+
):
|
303 |
+
super(SineGen, self).__init__()
|
304 |
+
self.sine_amp = sine_amp
|
305 |
+
self.noise_std = noise_std
|
306 |
+
self.harmonic_num = harmonic_num
|
307 |
+
self.dim = self.harmonic_num + 1
|
308 |
+
self.sampling_rate = samp_rate
|
309 |
+
self.voiced_threshold = voiced_threshold
|
310 |
+
|
311 |
+
def _f02uv(self, f0):
|
312 |
+
# generate uv signal
|
313 |
+
uv = torch.ones_like(f0)
|
314 |
+
uv = uv * (f0 > self.voiced_threshold)
|
315 |
+
return uv
|
316 |
+
|
317 |
+
def forward(self, f0, upp):
|
318 |
+
"""sine_tensor, uv = forward(f0)
|
319 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
320 |
+
f0 for unvoiced steps should be 0
|
321 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
322 |
+
output uv: tensor(batchsize=1, length, 1)
|
323 |
+
"""
|
324 |
+
with torch.no_grad():
|
325 |
+
f0 = f0[:, None].transpose(1, 2)
|
326 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
327 |
+
# fundamental component
|
328 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
329 |
+
for idx in np.arange(self.harmonic_num):
|
330 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
331 |
+
idx + 2
|
332 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
333 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
334 |
+
rand_ini = torch.rand(
|
335 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
336 |
+
)
|
337 |
+
rand_ini[:, 0] = 0
|
338 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
339 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
340 |
+
tmp_over_one *= upp
|
341 |
+
tmp_over_one = F.interpolate(
|
342 |
+
tmp_over_one.transpose(2, 1),
|
343 |
+
scale_factor=upp,
|
344 |
+
mode="linear",
|
345 |
+
align_corners=True,
|
346 |
+
).transpose(2, 1)
|
347 |
+
rad_values = F.interpolate(
|
348 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
349 |
+
).transpose(
|
350 |
+
2, 1
|
351 |
+
) #######
|
352 |
+
tmp_over_one %= 1
|
353 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
354 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
355 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
356 |
+
sine_waves = torch.sin(
|
357 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
358 |
+
)
|
359 |
+
sine_waves = sine_waves * self.sine_amp
|
360 |
+
uv = self._f02uv(f0)
|
361 |
+
uv = F.interpolate(
|
362 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
363 |
+
).transpose(2, 1)
|
364 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
365 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
366 |
+
sine_waves = sine_waves * uv + noise
|
367 |
+
return sine_waves, uv, noise
|
368 |
+
|
369 |
+
|
370 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
371 |
+
"""SourceModule for hn-nsf
|
372 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
373 |
+
add_noise_std=0.003, voiced_threshod=0)
|
374 |
+
sampling_rate: sampling_rate in Hz
|
375 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
376 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
377 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
378 |
+
note that amplitude of noise in unvoiced is decided
|
379 |
+
by sine_amp
|
380 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
381 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
382 |
+
F0_sampled (batchsize, length, 1)
|
383 |
+
Sine_source (batchsize, length, 1)
|
384 |
+
noise_source (batchsize, length 1)
|
385 |
+
uv (batchsize, length, 1)
|
386 |
+
"""
|
387 |
+
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
sampling_rate,
|
391 |
+
harmonic_num=0,
|
392 |
+
sine_amp=0.1,
|
393 |
+
add_noise_std=0.003,
|
394 |
+
voiced_threshod=0,
|
395 |
+
is_half=True,
|
396 |
+
):
|
397 |
+
super(SourceModuleHnNSF, self).__init__()
|
398 |
+
|
399 |
+
self.sine_amp = sine_amp
|
400 |
+
self.noise_std = add_noise_std
|
401 |
+
self.is_half = is_half
|
402 |
+
# to produce sine waveforms
|
403 |
+
self.l_sin_gen = SineGen(
|
404 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
405 |
+
)
|
406 |
+
|
407 |
+
# to merge source harmonics into a single excitation
|
408 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
409 |
+
self.l_tanh = torch.nn.Tanh()
|
410 |
+
|
411 |
+
def forward(self, x, upp=None):
|
412 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
413 |
+
if self.is_half:
|
414 |
+
sine_wavs = sine_wavs.half()
|
415 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
416 |
+
return sine_merge, None, None # noise, uv
|
417 |
+
|
418 |
+
|
419 |
+
class GeneratorNSF(torch.nn.Module):
|
420 |
+
def __init__(
|
421 |
+
self,
|
422 |
+
initial_channel,
|
423 |
+
resblock,
|
424 |
+
resblock_kernel_sizes,
|
425 |
+
resblock_dilation_sizes,
|
426 |
+
upsample_rates,
|
427 |
+
upsample_initial_channel,
|
428 |
+
upsample_kernel_sizes,
|
429 |
+
gin_channels,
|
430 |
+
sr,
|
431 |
+
is_half=False,
|
432 |
+
):
|
433 |
+
super(GeneratorNSF, self).__init__()
|
434 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
435 |
+
self.num_upsamples = len(upsample_rates)
|
436 |
+
|
437 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
438 |
+
self.m_source = SourceModuleHnNSF(
|
439 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
440 |
+
)
|
441 |
+
self.noise_convs = nn.ModuleList()
|
442 |
+
self.conv_pre = Conv1d(
|
443 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
444 |
+
)
|
445 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
446 |
+
|
447 |
+
self.ups = nn.ModuleList()
|
448 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
449 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
450 |
+
self.ups.append(
|
451 |
+
weight_norm(
|
452 |
+
ConvTranspose1d(
|
453 |
+
upsample_initial_channel // (2**i),
|
454 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
455 |
+
k,
|
456 |
+
u,
|
457 |
+
padding=(k - u) // 2,
|
458 |
+
)
|
459 |
+
)
|
460 |
+
)
|
461 |
+
if i + 1 < len(upsample_rates):
|
462 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
463 |
+
self.noise_convs.append(
|
464 |
+
Conv1d(
|
465 |
+
1,
|
466 |
+
c_cur,
|
467 |
+
kernel_size=stride_f0 * 2,
|
468 |
+
stride=stride_f0,
|
469 |
+
padding=stride_f0 // 2,
|
470 |
+
)
|
471 |
+
)
|
472 |
+
else:
|
473 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
474 |
+
|
475 |
+
self.resblocks = nn.ModuleList()
|
476 |
+
for i in range(len(self.ups)):
|
477 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
478 |
+
for j, (k, d) in enumerate(
|
479 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
480 |
+
):
|
481 |
+
self.resblocks.append(resblock(ch, k, d))
|
482 |
+
|
483 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
484 |
+
self.ups.apply(init_weights)
|
485 |
+
|
486 |
+
if gin_channels != 0:
|
487 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
488 |
+
|
489 |
+
self.upp = np.prod(upsample_rates)
|
490 |
+
|
491 |
+
def forward(self, x, f0, g=None):
|
492 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
493 |
+
har_source = har_source.transpose(1, 2)
|
494 |
+
x = self.conv_pre(x)
|
495 |
+
if g is not None:
|
496 |
+
x = x + self.cond(g)
|
497 |
+
|
498 |
+
for i in range(self.num_upsamples):
|
499 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
500 |
+
x = self.ups[i](x)
|
501 |
+
x_source = self.noise_convs[i](har_source)
|
502 |
+
x = x + x_source
|
503 |
+
xs = None
|
504 |
+
for j in range(self.num_kernels):
|
505 |
+
if xs is None:
|
506 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
507 |
+
else:
|
508 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
509 |
+
x = xs / self.num_kernels
|
510 |
+
x = F.leaky_relu(x)
|
511 |
+
x = self.conv_post(x)
|
512 |
+
x = torch.tanh(x)
|
513 |
+
return x
|
514 |
+
|
515 |
+
def remove_weight_norm(self):
|
516 |
+
for l in self.ups:
|
517 |
+
remove_weight_norm(l)
|
518 |
+
for l in self.resblocks:
|
519 |
+
l.remove_weight_norm()
|
520 |
+
|
521 |
+
|
522 |
+
sr2sr = {
|
523 |
+
"32k": 32000,
|
524 |
+
"40k": 40000,
|
525 |
+
"48k": 48000,
|
526 |
+
}
|
527 |
+
|
528 |
+
|
529 |
+
class SynthesizerTrnMs256NSFsid(nn.Module):
|
530 |
+
def __init__(
|
531 |
+
self,
|
532 |
+
spec_channels,
|
533 |
+
segment_size,
|
534 |
+
inter_channels,
|
535 |
+
hidden_channels,
|
536 |
+
filter_channels,
|
537 |
+
n_heads,
|
538 |
+
n_layers,
|
539 |
+
kernel_size,
|
540 |
+
p_dropout,
|
541 |
+
resblock,
|
542 |
+
resblock_kernel_sizes,
|
543 |
+
resblock_dilation_sizes,
|
544 |
+
upsample_rates,
|
545 |
+
upsample_initial_channel,
|
546 |
+
upsample_kernel_sizes,
|
547 |
+
spk_embed_dim,
|
548 |
+
gin_channels,
|
549 |
+
sr,
|
550 |
+
**kwargs
|
551 |
+
):
|
552 |
+
super().__init__()
|
553 |
+
if type(sr) == type("strr"):
|
554 |
+
sr = sr2sr[sr]
|
555 |
+
self.spec_channels = spec_channels
|
556 |
+
self.inter_channels = inter_channels
|
557 |
+
self.hidden_channels = hidden_channels
|
558 |
+
self.filter_channels = filter_channels
|
559 |
+
self.n_heads = n_heads
|
560 |
+
self.n_layers = n_layers
|
561 |
+
self.kernel_size = kernel_size
|
562 |
+
self.p_dropout = p_dropout
|
563 |
+
self.resblock = resblock
|
564 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
565 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
566 |
+
self.upsample_rates = upsample_rates
|
567 |
+
self.upsample_initial_channel = upsample_initial_channel
|
568 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
569 |
+
self.segment_size = segment_size
|
570 |
+
self.gin_channels = gin_channels
|
571 |
+
# self.hop_length = hop_length#
|
572 |
+
self.spk_embed_dim = spk_embed_dim
|
573 |
+
self.enc_p = TextEncoder256(
|
574 |
+
inter_channels,
|
575 |
+
hidden_channels,
|
576 |
+
filter_channels,
|
577 |
+
n_heads,
|
578 |
+
n_layers,
|
579 |
+
kernel_size,
|
580 |
+
p_dropout,
|
581 |
+
)
|
582 |
+
self.dec = GeneratorNSF(
|
583 |
+
inter_channels,
|
584 |
+
resblock,
|
585 |
+
resblock_kernel_sizes,
|
586 |
+
resblock_dilation_sizes,
|
587 |
+
upsample_rates,
|
588 |
+
upsample_initial_channel,
|
589 |
+
upsample_kernel_sizes,
|
590 |
+
gin_channels=gin_channels,
|
591 |
+
sr=sr,
|
592 |
+
is_half=kwargs["is_half"],
|
593 |
+
)
|
594 |
+
self.enc_q = PosteriorEncoder(
|
595 |
+
spec_channels,
|
596 |
+
inter_channels,
|
597 |
+
hidden_channels,
|
598 |
+
5,
|
599 |
+
1,
|
600 |
+
16,
|
601 |
+
gin_channels=gin_channels,
|
602 |
+
)
|
603 |
+
self.flow = ResidualCouplingBlock(
|
604 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
605 |
+
)
|
606 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
607 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
608 |
+
|
609 |
+
def remove_weight_norm(self):
|
610 |
+
self.dec.remove_weight_norm()
|
611 |
+
self.flow.remove_weight_norm()
|
612 |
+
self.enc_q.remove_weight_norm()
|
613 |
+
|
614 |
+
def forward(
|
615 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
616 |
+
): # 这里ds是id,[bs,1]
|
617 |
+
# print(1,pitch.shape)#[bs,t]
|
618 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
619 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
620 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
621 |
+
z_p = self.flow(z, y_mask, g=g)
|
622 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
623 |
+
z, y_lengths, self.segment_size
|
624 |
+
)
|
625 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
626 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
627 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
628 |
+
o = self.dec(z_slice, pitchf, g=g)
|
629 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
630 |
+
|
631 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
632 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
633 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
634 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
635 |
+
if rate:
|
636 |
+
head = int(z_p.shape[2] * rate)
|
637 |
+
z_p = z_p[:, :, -head:]
|
638 |
+
x_mask = x_mask[:, :, -head:]
|
639 |
+
nsff0 = nsff0[:, -head:]
|
640 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
641 |
+
o = self.dec(z * x_mask, nsff0, g=g)
|
642 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
643 |
+
|
644 |
+
|
645 |
+
class SynthesizerTrnMs768NSFsid(nn.Module):
|
646 |
+
def __init__(
|
647 |
+
self,
|
648 |
+
spec_channels,
|
649 |
+
segment_size,
|
650 |
+
inter_channels,
|
651 |
+
hidden_channels,
|
652 |
+
filter_channels,
|
653 |
+
n_heads,
|
654 |
+
n_layers,
|
655 |
+
kernel_size,
|
656 |
+
p_dropout,
|
657 |
+
resblock,
|
658 |
+
resblock_kernel_sizes,
|
659 |
+
resblock_dilation_sizes,
|
660 |
+
upsample_rates,
|
661 |
+
upsample_initial_channel,
|
662 |
+
upsample_kernel_sizes,
|
663 |
+
spk_embed_dim,
|
664 |
+
gin_channels,
|
665 |
+
sr,
|
666 |
+
**kwargs
|
667 |
+
):
|
668 |
+
super().__init__()
|
669 |
+
if type(sr) == type("strr"):
|
670 |
+
sr = sr2sr[sr]
|
671 |
+
self.spec_channels = spec_channels
|
672 |
+
self.inter_channels = inter_channels
|
673 |
+
self.hidden_channels = hidden_channels
|
674 |
+
self.filter_channels = filter_channels
|
675 |
+
self.n_heads = n_heads
|
676 |
+
self.n_layers = n_layers
|
677 |
+
self.kernel_size = kernel_size
|
678 |
+
self.p_dropout = p_dropout
|
679 |
+
self.resblock = resblock
|
680 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
681 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
682 |
+
self.upsample_rates = upsample_rates
|
683 |
+
self.upsample_initial_channel = upsample_initial_channel
|
684 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
685 |
+
self.segment_size = segment_size
|
686 |
+
self.gin_channels = gin_channels
|
687 |
+
# self.hop_length = hop_length#
|
688 |
+
self.spk_embed_dim = spk_embed_dim
|
689 |
+
self.enc_p = TextEncoder768(
|
690 |
+
inter_channels,
|
691 |
+
hidden_channels,
|
692 |
+
filter_channels,
|
693 |
+
n_heads,
|
694 |
+
n_layers,
|
695 |
+
kernel_size,
|
696 |
+
p_dropout,
|
697 |
+
)
|
698 |
+
self.dec = GeneratorNSF(
|
699 |
+
inter_channels,
|
700 |
+
resblock,
|
701 |
+
resblock_kernel_sizes,
|
702 |
+
resblock_dilation_sizes,
|
703 |
+
upsample_rates,
|
704 |
+
upsample_initial_channel,
|
705 |
+
upsample_kernel_sizes,
|
706 |
+
gin_channels=gin_channels,
|
707 |
+
sr=sr,
|
708 |
+
is_half=kwargs["is_half"],
|
709 |
+
)
|
710 |
+
self.enc_q = PosteriorEncoder(
|
711 |
+
spec_channels,
|
712 |
+
inter_channels,
|
713 |
+
hidden_channels,
|
714 |
+
5,
|
715 |
+
1,
|
716 |
+
16,
|
717 |
+
gin_channels=gin_channels,
|
718 |
+
)
|
719 |
+
self.flow = ResidualCouplingBlock(
|
720 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
721 |
+
)
|
722 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
723 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
724 |
+
|
725 |
+
def remove_weight_norm(self):
|
726 |
+
self.dec.remove_weight_norm()
|
727 |
+
self.flow.remove_weight_norm()
|
728 |
+
self.enc_q.remove_weight_norm()
|
729 |
+
|
730 |
+
def forward(
|
731 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
732 |
+
): # 这里ds是id��[bs,1]
|
733 |
+
# print(1,pitch.shape)#[bs,t]
|
734 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
735 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
736 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
737 |
+
z_p = self.flow(z, y_mask, g=g)
|
738 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
739 |
+
z, y_lengths, self.segment_size
|
740 |
+
)
|
741 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
742 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
743 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
744 |
+
o = self.dec(z_slice, pitchf, g=g)
|
745 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
746 |
+
|
747 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
748 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
749 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
750 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
751 |
+
if rate:
|
752 |
+
head = int(z_p.shape[2] * rate)
|
753 |
+
z_p = z_p[:, :, -head:]
|
754 |
+
x_mask = x_mask[:, :, -head:]
|
755 |
+
nsff0 = nsff0[:, -head:]
|
756 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
757 |
+
o = self.dec(z * x_mask, nsff0, g=g)
|
758 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
759 |
+
|
760 |
+
|
761 |
+
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
762 |
+
def __init__(
|
763 |
+
self,
|
764 |
+
spec_channels,
|
765 |
+
segment_size,
|
766 |
+
inter_channels,
|
767 |
+
hidden_channels,
|
768 |
+
filter_channels,
|
769 |
+
n_heads,
|
770 |
+
n_layers,
|
771 |
+
kernel_size,
|
772 |
+
p_dropout,
|
773 |
+
resblock,
|
774 |
+
resblock_kernel_sizes,
|
775 |
+
resblock_dilation_sizes,
|
776 |
+
upsample_rates,
|
777 |
+
upsample_initial_channel,
|
778 |
+
upsample_kernel_sizes,
|
779 |
+
spk_embed_dim,
|
780 |
+
gin_channels,
|
781 |
+
sr=None,
|
782 |
+
**kwargs
|
783 |
+
):
|
784 |
+
super().__init__()
|
785 |
+
self.spec_channels = spec_channels
|
786 |
+
self.inter_channels = inter_channels
|
787 |
+
self.hidden_channels = hidden_channels
|
788 |
+
self.filter_channels = filter_channels
|
789 |
+
self.n_heads = n_heads
|
790 |
+
self.n_layers = n_layers
|
791 |
+
self.kernel_size = kernel_size
|
792 |
+
self.p_dropout = p_dropout
|
793 |
+
self.resblock = resblock
|
794 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
795 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
796 |
+
self.upsample_rates = upsample_rates
|
797 |
+
self.upsample_initial_channel = upsample_initial_channel
|
798 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
799 |
+
self.segment_size = segment_size
|
800 |
+
self.gin_channels = gin_channels
|
801 |
+
# self.hop_length = hop_length#
|
802 |
+
self.spk_embed_dim = spk_embed_dim
|
803 |
+
self.enc_p = TextEncoder256(
|
804 |
+
inter_channels,
|
805 |
+
hidden_channels,
|
806 |
+
filter_channels,
|
807 |
+
n_heads,
|
808 |
+
n_layers,
|
809 |
+
kernel_size,
|
810 |
+
p_dropout,
|
811 |
+
f0=False,
|
812 |
+
)
|
813 |
+
self.dec = Generator(
|
814 |
+
inter_channels,
|
815 |
+
resblock,
|
816 |
+
resblock_kernel_sizes,
|
817 |
+
resblock_dilation_sizes,
|
818 |
+
upsample_rates,
|
819 |
+
upsample_initial_channel,
|
820 |
+
upsample_kernel_sizes,
|
821 |
+
gin_channels=gin_channels,
|
822 |
+
)
|
823 |
+
self.enc_q = PosteriorEncoder(
|
824 |
+
spec_channels,
|
825 |
+
inter_channels,
|
826 |
+
hidden_channels,
|
827 |
+
5,
|
828 |
+
1,
|
829 |
+
16,
|
830 |
+
gin_channels=gin_channels,
|
831 |
+
)
|
832 |
+
self.flow = ResidualCouplingBlock(
|
833 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
834 |
+
)
|
835 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
836 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
837 |
+
|
838 |
+
def remove_weight_norm(self):
|
839 |
+
self.dec.remove_weight_norm()
|
840 |
+
self.flow.remove_weight_norm()
|
841 |
+
self.enc_q.remove_weight_norm()
|
842 |
+
|
843 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
844 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
845 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
846 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
847 |
+
z_p = self.flow(z, y_mask, g=g)
|
848 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
849 |
+
z, y_lengths, self.segment_size
|
850 |
+
)
|
851 |
+
o = self.dec(z_slice, g=g)
|
852 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
853 |
+
|
854 |
+
def infer(self, phone, phone_lengths, sid, rate=None):
|
855 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
856 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
857 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
858 |
+
if rate:
|
859 |
+
head = int(z_p.shape[2] * rate)
|
860 |
+
z_p = z_p[:, :, -head:]
|
861 |
+
x_mask = x_mask[:, :, -head:]
|
862 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
863 |
+
o = self.dec(z * x_mask, g=g)
|
864 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
865 |
+
|
866 |
+
|
867 |
+
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
868 |
+
def __init__(
|
869 |
+
self,
|
870 |
+
spec_channels,
|
871 |
+
segment_size,
|
872 |
+
inter_channels,
|
873 |
+
hidden_channels,
|
874 |
+
filter_channels,
|
875 |
+
n_heads,
|
876 |
+
n_layers,
|
877 |
+
kernel_size,
|
878 |
+
p_dropout,
|
879 |
+
resblock,
|
880 |
+
resblock_kernel_sizes,
|
881 |
+
resblock_dilation_sizes,
|
882 |
+
upsample_rates,
|
883 |
+
upsample_initial_channel,
|
884 |
+
upsample_kernel_sizes,
|
885 |
+
spk_embed_dim,
|
886 |
+
gin_channels,
|
887 |
+
sr=None,
|
888 |
+
**kwargs
|
889 |
+
):
|
890 |
+
super().__init__()
|
891 |
+
self.spec_channels = spec_channels
|
892 |
+
self.inter_channels = inter_channels
|
893 |
+
self.hidden_channels = hidden_channels
|
894 |
+
self.filter_channels = filter_channels
|
895 |
+
self.n_heads = n_heads
|
896 |
+
self.n_layers = n_layers
|
897 |
+
self.kernel_size = kernel_size
|
898 |
+
self.p_dropout = p_dropout
|
899 |
+
self.resblock = resblock
|
900 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
901 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
902 |
+
self.upsample_rates = upsample_rates
|
903 |
+
self.upsample_initial_channel = upsample_initial_channel
|
904 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
905 |
+
self.segment_size = segment_size
|
906 |
+
self.gin_channels = gin_channels
|
907 |
+
# self.hop_length = hop_length#
|
908 |
+
self.spk_embed_dim = spk_embed_dim
|
909 |
+
self.enc_p = TextEncoder768(
|
910 |
+
inter_channels,
|
911 |
+
hidden_channels,
|
912 |
+
filter_channels,
|
913 |
+
n_heads,
|
914 |
+
n_layers,
|
915 |
+
kernel_size,
|
916 |
+
p_dropout,
|
917 |
+
f0=False,
|
918 |
+
)
|
919 |
+
self.dec = Generator(
|
920 |
+
inter_channels,
|
921 |
+
resblock,
|
922 |
+
resblock_kernel_sizes,
|
923 |
+
resblock_dilation_sizes,
|
924 |
+
upsample_rates,
|
925 |
+
upsample_initial_channel,
|
926 |
+
upsample_kernel_sizes,
|
927 |
+
gin_channels=gin_channels,
|
928 |
+
)
|
929 |
+
self.enc_q = PosteriorEncoder(
|
930 |
+
spec_channels,
|
931 |
+
inter_channels,
|
932 |
+
hidden_channels,
|
933 |
+
5,
|
934 |
+
1,
|
935 |
+
16,
|
936 |
+
gin_channels=gin_channels,
|
937 |
+
)
|
938 |
+
self.flow = ResidualCouplingBlock(
|
939 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
940 |
+
)
|
941 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
942 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
943 |
+
|
944 |
+
def remove_weight_norm(self):
|
945 |
+
self.dec.remove_weight_norm()
|
946 |
+
self.flow.remove_weight_norm()
|
947 |
+
self.enc_q.remove_weight_norm()
|
948 |
+
|
949 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
950 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
951 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
952 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
953 |
+
z_p = self.flow(z, y_mask, g=g)
|
954 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
955 |
+
z, y_lengths, self.segment_size
|
956 |
+
)
|
957 |
+
o = self.dec(z_slice, g=g)
|
958 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
959 |
+
|
960 |
+
def infer(self, phone, phone_lengths, sid, rate=None):
|
961 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
962 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
963 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
964 |
+
if rate:
|
965 |
+
head = int(z_p.shape[2] * rate)
|
966 |
+
z_p = z_p[:, :, -head:]
|
967 |
+
x_mask = x_mask[:, :, -head:]
|
968 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
969 |
+
o = self.dec(z * x_mask, g=g)
|
970 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
971 |
+
|
972 |
+
|
973 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
974 |
+
def __init__(self, use_spectral_norm=False):
|
975 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
976 |
+
periods = [2, 3, 5, 7, 11, 17]
|
977 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
978 |
+
|
979 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
980 |
+
discs = discs + [
|
981 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
982 |
+
]
|
983 |
+
self.discriminators = nn.ModuleList(discs)
|
984 |
+
|
985 |
+
def forward(self, y, y_hat):
|
986 |
+
y_d_rs = [] #
|
987 |
+
y_d_gs = []
|
988 |
+
fmap_rs = []
|
989 |
+
fmap_gs = []
|
990 |
+
for i, d in enumerate(self.discriminators):
|
991 |
+
y_d_r, fmap_r = d(y)
|
992 |
+
y_d_g, fmap_g = d(y_hat)
|
993 |
+
# for j in range(len(fmap_r)):
|
994 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
995 |
+
y_d_rs.append(y_d_r)
|
996 |
+
y_d_gs.append(y_d_g)
|
997 |
+
fmap_rs.append(fmap_r)
|
998 |
+
fmap_gs.append(fmap_g)
|
999 |
+
|
1000 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1001 |
+
|
1002 |
+
|
1003 |
+
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
1004 |
+
def __init__(self, use_spectral_norm=False):
|
1005 |
+
super(MultiPeriodDiscriminatorV2, self).__init__()
|
1006 |
+
# periods = [2, 3, 5, 7, 11, 17]
|
1007 |
+
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
1008 |
+
|
1009 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
1010 |
+
discs = discs + [
|
1011 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
1012 |
+
]
|
1013 |
+
self.discriminators = nn.ModuleList(discs)
|
1014 |
+
|
1015 |
+
def forward(self, y, y_hat):
|
1016 |
+
y_d_rs = [] #
|
1017 |
+
y_d_gs = []
|
1018 |
+
fmap_rs = []
|
1019 |
+
fmap_gs = []
|
1020 |
+
for i, d in enumerate(self.discriminators):
|
1021 |
+
y_d_r, fmap_r = d(y)
|
1022 |
+
y_d_g, fmap_g = d(y_hat)
|
1023 |
+
# for j in range(len(fmap_r)):
|
1024 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
1025 |
+
y_d_rs.append(y_d_r)
|
1026 |
+
y_d_gs.append(y_d_g)
|
1027 |
+
fmap_rs.append(fmap_r)
|
1028 |
+
fmap_gs.append(fmap_g)
|
1029 |
+
|
1030 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1031 |
+
|
1032 |
+
|
1033 |
+
class DiscriminatorS(torch.nn.Module):
|
1034 |
+
def __init__(self, use_spectral_norm=False):
|
1035 |
+
super(DiscriminatorS, self).__init__()
|
1036 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1037 |
+
self.convs = nn.ModuleList(
|
1038 |
+
[
|
1039 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
1040 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
1041 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
1042 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
1043 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
1044 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
1045 |
+
]
|
1046 |
+
)
|
1047 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
1048 |
+
|
1049 |
+
def forward(self, x):
|
1050 |
+
fmap = []
|
1051 |
+
|
1052 |
+
for l in self.convs:
|
1053 |
+
x = l(x)
|
1054 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1055 |
+
fmap.append(x)
|
1056 |
+
x = self.conv_post(x)
|
1057 |
+
fmap.append(x)
|
1058 |
+
x = torch.flatten(x, 1, -1)
|
1059 |
+
|
1060 |
+
return x, fmap
|
1061 |
+
|
1062 |
+
|
1063 |
+
class DiscriminatorP(torch.nn.Module):
|
1064 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
1065 |
+
super(DiscriminatorP, self).__init__()
|
1066 |
+
self.period = period
|
1067 |
+
self.use_spectral_norm = use_spectral_norm
|
1068 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1069 |
+
self.convs = nn.ModuleList(
|
1070 |
+
[
|
1071 |
+
norm_f(
|
1072 |
+
Conv2d(
|
1073 |
+
1,
|
1074 |
+
32,
|
1075 |
+
(kernel_size, 1),
|
1076 |
+
(stride, 1),
|
1077 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1078 |
+
)
|
1079 |
+
),
|
1080 |
+
norm_f(
|
1081 |
+
Conv2d(
|
1082 |
+
32,
|
1083 |
+
128,
|
1084 |
+
(kernel_size, 1),
|
1085 |
+
(stride, 1),
|
1086 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1087 |
+
)
|
1088 |
+
),
|
1089 |
+
norm_f(
|
1090 |
+
Conv2d(
|
1091 |
+
128,
|
1092 |
+
512,
|
1093 |
+
(kernel_size, 1),
|
1094 |
+
(stride, 1),
|
1095 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1096 |
+
)
|
1097 |
+
),
|
1098 |
+
norm_f(
|
1099 |
+
Conv2d(
|
1100 |
+
512,
|
1101 |
+
1024,
|
1102 |
+
(kernel_size, 1),
|
1103 |
+
(stride, 1),
|
1104 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1105 |
+
)
|
1106 |
+
),
|
1107 |
+
norm_f(
|
1108 |
+
Conv2d(
|
1109 |
+
1024,
|
1110 |
+
1024,
|
1111 |
+
(kernel_size, 1),
|
1112 |
+
1,
|
1113 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1114 |
+
)
|
1115 |
+
),
|
1116 |
+
]
|
1117 |
+
)
|
1118 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
1119 |
+
|
1120 |
+
def forward(self, x):
|
1121 |
+
fmap = []
|
1122 |
+
|
1123 |
+
# 1d to 2d
|
1124 |
+
b, c, t = x.shape
|
1125 |
+
if t % self.period != 0: # pad first
|
1126 |
+
n_pad = self.period - (t % self.period)
|
1127 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
1128 |
+
t = t + n_pad
|
1129 |
+
x = x.view(b, c, t // self.period, self.period)
|
1130 |
+
|
1131 |
+
for l in self.convs:
|
1132 |
+
x = l(x)
|
1133 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1134 |
+
fmap.append(x)
|
1135 |
+
x = self.conv_post(x)
|
1136 |
+
fmap.append(x)
|
1137 |
+
x = torch.flatten(x, 1, -1)
|
1138 |
+
|
1139 |
+
return x, fmap
|
infer_pack/modules.py
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
from infer_pack import commons
|
10 |
+
from infer_pack.commons import init_weights, get_padding
|
11 |
+
from infer_pack.transforms import piecewise_rational_quadratic_transform
|
12 |
+
|
13 |
+
LRELU_SLOPE = 0.1
|
14 |
+
|
15 |
+
|
16 |
+
class LayerNorm(nn.Module):
|
17 |
+
def __init__(self, channels, eps=1e-5):
|
18 |
+
super().__init__()
|
19 |
+
self.channels = channels
|
20 |
+
self.eps = eps
|
21 |
+
|
22 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
23 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = x.transpose(1, -1)
|
27 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
28 |
+
return x.transpose(1, -1)
|
29 |
+
|
30 |
+
|
31 |
+
class ConvReluNorm(nn.Module):
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
in_channels,
|
35 |
+
hidden_channels,
|
36 |
+
out_channels,
|
37 |
+
kernel_size,
|
38 |
+
n_layers,
|
39 |
+
p_dropout,
|
40 |
+
):
|
41 |
+
super().__init__()
|
42 |
+
self.in_channels = in_channels
|
43 |
+
self.hidden_channels = hidden_channels
|
44 |
+
self.out_channels = out_channels
|
45 |
+
self.kernel_size = kernel_size
|
46 |
+
self.n_layers = n_layers
|
47 |
+
self.p_dropout = p_dropout
|
48 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
49 |
+
|
50 |
+
self.conv_layers = nn.ModuleList()
|
51 |
+
self.norm_layers = nn.ModuleList()
|
52 |
+
self.conv_layers.append(
|
53 |
+
nn.Conv1d(
|
54 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
55 |
+
)
|
56 |
+
)
|
57 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
58 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
59 |
+
for _ in range(n_layers - 1):
|
60 |
+
self.conv_layers.append(
|
61 |
+
nn.Conv1d(
|
62 |
+
hidden_channels,
|
63 |
+
hidden_channels,
|
64 |
+
kernel_size,
|
65 |
+
padding=kernel_size // 2,
|
66 |
+
)
|
67 |
+
)
|
68 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
69 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
70 |
+
self.proj.weight.data.zero_()
|
71 |
+
self.proj.bias.data.zero_()
|
72 |
+
|
73 |
+
def forward(self, x, x_mask):
|
74 |
+
x_org = x
|
75 |
+
for i in range(self.n_layers):
|
76 |
+
x = self.conv_layers[i](x * x_mask)
|
77 |
+
x = self.norm_layers[i](x)
|
78 |
+
x = self.relu_drop(x)
|
79 |
+
x = x_org + self.proj(x)
|
80 |
+
return x * x_mask
|
81 |
+
|
82 |
+
|
83 |
+
class DDSConv(nn.Module):
|
84 |
+
"""
|
85 |
+
Dialted and Depth-Separable Convolution
|
86 |
+
"""
|
87 |
+
|
88 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
89 |
+
super().__init__()
|
90 |
+
self.channels = channels
|
91 |
+
self.kernel_size = kernel_size
|
92 |
+
self.n_layers = n_layers
|
93 |
+
self.p_dropout = p_dropout
|
94 |
+
|
95 |
+
self.drop = nn.Dropout(p_dropout)
|
96 |
+
self.convs_sep = nn.ModuleList()
|
97 |
+
self.convs_1x1 = nn.ModuleList()
|
98 |
+
self.norms_1 = nn.ModuleList()
|
99 |
+
self.norms_2 = nn.ModuleList()
|
100 |
+
for i in range(n_layers):
|
101 |
+
dilation = kernel_size**i
|
102 |
+
padding = (kernel_size * dilation - dilation) // 2
|
103 |
+
self.convs_sep.append(
|
104 |
+
nn.Conv1d(
|
105 |
+
channels,
|
106 |
+
channels,
|
107 |
+
kernel_size,
|
108 |
+
groups=channels,
|
109 |
+
dilation=dilation,
|
110 |
+
padding=padding,
|
111 |
+
)
|
112 |
+
)
|
113 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
114 |
+
self.norms_1.append(LayerNorm(channels))
|
115 |
+
self.norms_2.append(LayerNorm(channels))
|
116 |
+
|
117 |
+
def forward(self, x, x_mask, g=None):
|
118 |
+
if g is not None:
|
119 |
+
x = x + g
|
120 |
+
for i in range(self.n_layers):
|
121 |
+
y = self.convs_sep[i](x * x_mask)
|
122 |
+
y = self.norms_1[i](y)
|
123 |
+
y = F.gelu(y)
|
124 |
+
y = self.convs_1x1[i](y)
|
125 |
+
y = self.norms_2[i](y)
|
126 |
+
y = F.gelu(y)
|
127 |
+
y = self.drop(y)
|
128 |
+
x = x + y
|
129 |
+
return x * x_mask
|
130 |
+
|
131 |
+
|
132 |
+
class WN(torch.nn.Module):
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
hidden_channels,
|
136 |
+
kernel_size,
|
137 |
+
dilation_rate,
|
138 |
+
n_layers,
|
139 |
+
gin_channels=0,
|
140 |
+
p_dropout=0,
|
141 |
+
):
|
142 |
+
super(WN, self).__init__()
|
143 |
+
assert kernel_size % 2 == 1
|
144 |
+
self.hidden_channels = hidden_channels
|
145 |
+
self.kernel_size = (kernel_size,)
|
146 |
+
self.dilation_rate = dilation_rate
|
147 |
+
self.n_layers = n_layers
|
148 |
+
self.gin_channels = gin_channels
|
149 |
+
self.p_dropout = p_dropout
|
150 |
+
|
151 |
+
self.in_layers = torch.nn.ModuleList()
|
152 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
153 |
+
self.drop = nn.Dropout(p_dropout)
|
154 |
+
|
155 |
+
if gin_channels != 0:
|
156 |
+
cond_layer = torch.nn.Conv1d(
|
157 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
158 |
+
)
|
159 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
160 |
+
|
161 |
+
for i in range(n_layers):
|
162 |
+
dilation = dilation_rate**i
|
163 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
164 |
+
in_layer = torch.nn.Conv1d(
|
165 |
+
hidden_channels,
|
166 |
+
2 * hidden_channels,
|
167 |
+
kernel_size,
|
168 |
+
dilation=dilation,
|
169 |
+
padding=padding,
|
170 |
+
)
|
171 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
172 |
+
self.in_layers.append(in_layer)
|
173 |
+
|
174 |
+
# last one is not necessary
|
175 |
+
if i < n_layers - 1:
|
176 |
+
res_skip_channels = 2 * hidden_channels
|
177 |
+
else:
|
178 |
+
res_skip_channels = hidden_channels
|
179 |
+
|
180 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
181 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
182 |
+
self.res_skip_layers.append(res_skip_layer)
|
183 |
+
|
184 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
185 |
+
output = torch.zeros_like(x)
|
186 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
187 |
+
|
188 |
+
if g is not None:
|
189 |
+
g = self.cond_layer(g)
|
190 |
+
|
191 |
+
for i in range(self.n_layers):
|
192 |
+
x_in = self.in_layers[i](x)
|
193 |
+
if g is not None:
|
194 |
+
cond_offset = i * 2 * self.hidden_channels
|
195 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
196 |
+
else:
|
197 |
+
g_l = torch.zeros_like(x_in)
|
198 |
+
|
199 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
200 |
+
acts = self.drop(acts)
|
201 |
+
|
202 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
203 |
+
if i < self.n_layers - 1:
|
204 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
205 |
+
x = (x + res_acts) * x_mask
|
206 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
207 |
+
else:
|
208 |
+
output = output + res_skip_acts
|
209 |
+
return output * x_mask
|
210 |
+
|
211 |
+
def remove_weight_norm(self):
|
212 |
+
if self.gin_channels != 0:
|
213 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
214 |
+
for l in self.in_layers:
|
215 |
+
torch.nn.utils.remove_weight_norm(l)
|
216 |
+
for l in self.res_skip_layers:
|
217 |
+
torch.nn.utils.remove_weight_norm(l)
|
218 |
+
|
219 |
+
|
220 |
+
class ResBlock1(torch.nn.Module):
|
221 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
222 |
+
super(ResBlock1, self).__init__()
|
223 |
+
self.convs1 = nn.ModuleList(
|
224 |
+
[
|
225 |
+
weight_norm(
|
226 |
+
Conv1d(
|
227 |
+
channels,
|
228 |
+
channels,
|
229 |
+
kernel_size,
|
230 |
+
1,
|
231 |
+
dilation=dilation[0],
|
232 |
+
padding=get_padding(kernel_size, dilation[0]),
|
233 |
+
)
|
234 |
+
),
|
235 |
+
weight_norm(
|
236 |
+
Conv1d(
|
237 |
+
channels,
|
238 |
+
channels,
|
239 |
+
kernel_size,
|
240 |
+
1,
|
241 |
+
dilation=dilation[1],
|
242 |
+
padding=get_padding(kernel_size, dilation[1]),
|
243 |
+
)
|
244 |
+
),
|
245 |
+
weight_norm(
|
246 |
+
Conv1d(
|
247 |
+
channels,
|
248 |
+
channels,
|
249 |
+
kernel_size,
|
250 |
+
1,
|
251 |
+
dilation=dilation[2],
|
252 |
+
padding=get_padding(kernel_size, dilation[2]),
|
253 |
+
)
|
254 |
+
),
|
255 |
+
]
|
256 |
+
)
|
257 |
+
self.convs1.apply(init_weights)
|
258 |
+
|
259 |
+
self.convs2 = nn.ModuleList(
|
260 |
+
[
|
261 |
+
weight_norm(
|
262 |
+
Conv1d(
|
263 |
+
channels,
|
264 |
+
channels,
|
265 |
+
kernel_size,
|
266 |
+
1,
|
267 |
+
dilation=1,
|
268 |
+
padding=get_padding(kernel_size, 1),
|
269 |
+
)
|
270 |
+
),
|
271 |
+
weight_norm(
|
272 |
+
Conv1d(
|
273 |
+
channels,
|
274 |
+
channels,
|
275 |
+
kernel_size,
|
276 |
+
1,
|
277 |
+
dilation=1,
|
278 |
+
padding=get_padding(kernel_size, 1),
|
279 |
+
)
|
280 |
+
),
|
281 |
+
weight_norm(
|
282 |
+
Conv1d(
|
283 |
+
channels,
|
284 |
+
channels,
|
285 |
+
kernel_size,
|
286 |
+
1,
|
287 |
+
dilation=1,
|
288 |
+
padding=get_padding(kernel_size, 1),
|
289 |
+
)
|
290 |
+
),
|
291 |
+
]
|
292 |
+
)
|
293 |
+
self.convs2.apply(init_weights)
|
294 |
+
|
295 |
+
def forward(self, x, x_mask=None):
|
296 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
297 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
298 |
+
if x_mask is not None:
|
299 |
+
xt = xt * x_mask
|
300 |
+
xt = c1(xt)
|
301 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
302 |
+
if x_mask is not None:
|
303 |
+
xt = xt * x_mask
|
304 |
+
xt = c2(xt)
|
305 |
+
x = xt + x
|
306 |
+
if x_mask is not None:
|
307 |
+
x = x * x_mask
|
308 |
+
return x
|
309 |
+
|
310 |
+
def remove_weight_norm(self):
|
311 |
+
for l in self.convs1:
|
312 |
+
remove_weight_norm(l)
|
313 |
+
for l in self.convs2:
|
314 |
+
remove_weight_norm(l)
|
315 |
+
|
316 |
+
|
317 |
+
class ResBlock2(torch.nn.Module):
|
318 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
319 |
+
super(ResBlock2, self).__init__()
|
320 |
+
self.convs = nn.ModuleList(
|
321 |
+
[
|
322 |
+
weight_norm(
|
323 |
+
Conv1d(
|
324 |
+
channels,
|
325 |
+
channels,
|
326 |
+
kernel_size,
|
327 |
+
1,
|
328 |
+
dilation=dilation[0],
|
329 |
+
padding=get_padding(kernel_size, dilation[0]),
|
330 |
+
)
|
331 |
+
),
|
332 |
+
weight_norm(
|
333 |
+
Conv1d(
|
334 |
+
channels,
|
335 |
+
channels,
|
336 |
+
kernel_size,
|
337 |
+
1,
|
338 |
+
dilation=dilation[1],
|
339 |
+
padding=get_padding(kernel_size, dilation[1]),
|
340 |
+
)
|
341 |
+
),
|
342 |
+
]
|
343 |
+
)
|
344 |
+
self.convs.apply(init_weights)
|
345 |
+
|
346 |
+
def forward(self, x, x_mask=None):
|
347 |
+
for c in self.convs:
|
348 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
349 |
+
if x_mask is not None:
|
350 |
+
xt = xt * x_mask
|
351 |
+
xt = c(xt)
|
352 |
+
x = xt + x
|
353 |
+
if x_mask is not None:
|
354 |
+
x = x * x_mask
|
355 |
+
return x
|
356 |
+
|
357 |
+
def remove_weight_norm(self):
|
358 |
+
for l in self.convs:
|
359 |
+
remove_weight_norm(l)
|
360 |
+
|
361 |
+
|
362 |
+
class Log(nn.Module):
|
363 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
364 |
+
if not reverse:
|
365 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
366 |
+
logdet = torch.sum(-y, [1, 2])
|
367 |
+
return y, logdet
|
368 |
+
else:
|
369 |
+
x = torch.exp(x) * x_mask
|
370 |
+
return x
|
371 |
+
|
372 |
+
|
373 |
+
class Flip(nn.Module):
|
374 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
375 |
+
x = torch.flip(x, [1])
|
376 |
+
if not reverse:
|
377 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
378 |
+
return x, logdet
|
379 |
+
else:
|
380 |
+
return x
|
381 |
+
|
382 |
+
|
383 |
+
class ElementwiseAffine(nn.Module):
|
384 |
+
def __init__(self, channels):
|
385 |
+
super().__init__()
|
386 |
+
self.channels = channels
|
387 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
388 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
389 |
+
|
390 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
391 |
+
if not reverse:
|
392 |
+
y = self.m + torch.exp(self.logs) * x
|
393 |
+
y = y * x_mask
|
394 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
395 |
+
return y, logdet
|
396 |
+
else:
|
397 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
398 |
+
return x
|
399 |
+
|
400 |
+
|
401 |
+
class ResidualCouplingLayer(nn.Module):
|
402 |
+
def __init__(
|
403 |
+
self,
|
404 |
+
channels,
|
405 |
+
hidden_channels,
|
406 |
+
kernel_size,
|
407 |
+
dilation_rate,
|
408 |
+
n_layers,
|
409 |
+
p_dropout=0,
|
410 |
+
gin_channels=0,
|
411 |
+
mean_only=False,
|
412 |
+
):
|
413 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
414 |
+
super().__init__()
|
415 |
+
self.channels = channels
|
416 |
+
self.hidden_channels = hidden_channels
|
417 |
+
self.kernel_size = kernel_size
|
418 |
+
self.dilation_rate = dilation_rate
|
419 |
+
self.n_layers = n_layers
|
420 |
+
self.half_channels = channels // 2
|
421 |
+
self.mean_only = mean_only
|
422 |
+
|
423 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
424 |
+
self.enc = WN(
|
425 |
+
hidden_channels,
|
426 |
+
kernel_size,
|
427 |
+
dilation_rate,
|
428 |
+
n_layers,
|
429 |
+
p_dropout=p_dropout,
|
430 |
+
gin_channels=gin_channels,
|
431 |
+
)
|
432 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
433 |
+
self.post.weight.data.zero_()
|
434 |
+
self.post.bias.data.zero_()
|
435 |
+
|
436 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
437 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
438 |
+
h = self.pre(x0) * x_mask
|
439 |
+
h = self.enc(h, x_mask, g=g)
|
440 |
+
stats = self.post(h) * x_mask
|
441 |
+
if not self.mean_only:
|
442 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
443 |
+
else:
|
444 |
+
m = stats
|
445 |
+
logs = torch.zeros_like(m)
|
446 |
+
|
447 |
+
if not reverse:
|
448 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
449 |
+
x = torch.cat([x0, x1], 1)
|
450 |
+
logdet = torch.sum(logs, [1, 2])
|
451 |
+
return x, logdet
|
452 |
+
else:
|
453 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
454 |
+
x = torch.cat([x0, x1], 1)
|
455 |
+
return x
|
456 |
+
|
457 |
+
def remove_weight_norm(self):
|
458 |
+
self.enc.remove_weight_norm()
|
459 |
+
|
460 |
+
|
461 |
+
class ConvFlow(nn.Module):
|
462 |
+
def __init__(
|
463 |
+
self,
|
464 |
+
in_channels,
|
465 |
+
filter_channels,
|
466 |
+
kernel_size,
|
467 |
+
n_layers,
|
468 |
+
num_bins=10,
|
469 |
+
tail_bound=5.0,
|
470 |
+
):
|
471 |
+
super().__init__()
|
472 |
+
self.in_channels = in_channels
|
473 |
+
self.filter_channels = filter_channels
|
474 |
+
self.kernel_size = kernel_size
|
475 |
+
self.n_layers = n_layers
|
476 |
+
self.num_bins = num_bins
|
477 |
+
self.tail_bound = tail_bound
|
478 |
+
self.half_channels = in_channels // 2
|
479 |
+
|
480 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
481 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
482 |
+
self.proj = nn.Conv1d(
|
483 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
484 |
+
)
|
485 |
+
self.proj.weight.data.zero_()
|
486 |
+
self.proj.bias.data.zero_()
|
487 |
+
|
488 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
489 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
490 |
+
h = self.pre(x0)
|
491 |
+
h = self.convs(h, x_mask, g=g)
|
492 |
+
h = self.proj(h) * x_mask
|
493 |
+
|
494 |
+
b, c, t = x0.shape
|
495 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
496 |
+
|
497 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
498 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
499 |
+
self.filter_channels
|
500 |
+
)
|
501 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
502 |
+
|
503 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
504 |
+
x1,
|
505 |
+
unnormalized_widths,
|
506 |
+
unnormalized_heights,
|
507 |
+
unnormalized_derivatives,
|
508 |
+
inverse=reverse,
|
509 |
+
tails="linear",
|
510 |
+
tail_bound=self.tail_bound,
|
511 |
+
)
|
512 |
+
|
513 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
514 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
515 |
+
if not reverse:
|
516 |
+
return x, logdet
|
517 |
+
else:
|
518 |
+
return x
|
infer_pack/modules/F0Predictor/DioF0Predictor.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
+
import pyworld
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
class DioF0Predictor(F0Predictor):
|
7 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
8 |
+
self.hop_length = hop_length
|
9 |
+
self.f0_min = f0_min
|
10 |
+
self.f0_max = f0_max
|
11 |
+
self.sampling_rate = sampling_rate
|
12 |
+
|
13 |
+
def interpolate_f0(self, f0):
|
14 |
+
"""
|
15 |
+
对F0进行插值处理
|
16 |
+
"""
|
17 |
+
|
18 |
+
data = np.reshape(f0, (f0.size, 1))
|
19 |
+
|
20 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
21 |
+
vuv_vector[data > 0.0] = 1.0
|
22 |
+
vuv_vector[data <= 0.0] = 0.0
|
23 |
+
|
24 |
+
ip_data = data
|
25 |
+
|
26 |
+
frame_number = data.size
|
27 |
+
last_value = 0.0
|
28 |
+
for i in range(frame_number):
|
29 |
+
if data[i] <= 0.0:
|
30 |
+
j = i + 1
|
31 |
+
for j in range(i + 1, frame_number):
|
32 |
+
if data[j] > 0.0:
|
33 |
+
break
|
34 |
+
if j < frame_number - 1:
|
35 |
+
if last_value > 0.0:
|
36 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
37 |
+
for k in range(i, j):
|
38 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
39 |
+
else:
|
40 |
+
for k in range(i, j):
|
41 |
+
ip_data[k] = data[j]
|
42 |
+
else:
|
43 |
+
for k in range(i, frame_number):
|
44 |
+
ip_data[k] = last_value
|
45 |
+
else:
|
46 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
47 |
+
last_value = data[i]
|
48 |
+
|
49 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
50 |
+
|
51 |
+
def resize_f0(self, x, target_len):
|
52 |
+
source = np.array(x)
|
53 |
+
source[source < 0.001] = np.nan
|
54 |
+
target = np.interp(
|
55 |
+
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
56 |
+
np.arange(0, len(source)),
|
57 |
+
source,
|
58 |
+
)
|
59 |
+
res = np.nan_to_num(target)
|
60 |
+
return res
|
61 |
+
|
62 |
+
def compute_f0(self, wav, p_len=None):
|
63 |
+
if p_len is None:
|
64 |
+
p_len = wav.shape[0] // self.hop_length
|
65 |
+
f0, t = pyworld.dio(
|
66 |
+
wav.astype(np.double),
|
67 |
+
fs=self.sampling_rate,
|
68 |
+
f0_floor=self.f0_min,
|
69 |
+
f0_ceil=self.f0_max,
|
70 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
71 |
+
)
|
72 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
73 |
+
for index, pitch in enumerate(f0):
|
74 |
+
f0[index] = round(pitch, 1)
|
75 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
76 |
+
|
77 |
+
def compute_f0_uv(self, wav, p_len=None):
|
78 |
+
if p_len is None:
|
79 |
+
p_len = wav.shape[0] // self.hop_length
|
80 |
+
f0, t = pyworld.dio(
|
81 |
+
wav.astype(np.double),
|
82 |
+
fs=self.sampling_rate,
|
83 |
+
f0_floor=self.f0_min,
|
84 |
+
f0_ceil=self.f0_max,
|
85 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
86 |
+
)
|
87 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
88 |
+
for index, pitch in enumerate(f0):
|
89 |
+
f0[index] = round(pitch, 1)
|
90 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
infer_pack/modules/F0Predictor/F0Predictor.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class F0Predictor(object):
|
2 |
+
def compute_f0(self, wav, p_len):
|
3 |
+
"""
|
4 |
+
input: wav:[signal_length]
|
5 |
+
p_len:int
|
6 |
+
output: f0:[signal_length//hop_length]
|
7 |
+
"""
|
8 |
+
pass
|
9 |
+
|
10 |
+
def compute_f0_uv(self, wav, p_len):
|
11 |
+
"""
|
12 |
+
input: wav:[signal_length]
|
13 |
+
p_len:int
|
14 |
+
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
15 |
+
"""
|
16 |
+
pass
|
infer_pack/modules/F0Predictor/HarvestF0Predictor.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
+
import pyworld
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
class HarvestF0Predictor(F0Predictor):
|
7 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
8 |
+
self.hop_length = hop_length
|
9 |
+
self.f0_min = f0_min
|
10 |
+
self.f0_max = f0_max
|
11 |
+
self.sampling_rate = sampling_rate
|
12 |
+
|
13 |
+
def interpolate_f0(self, f0):
|
14 |
+
"""
|
15 |
+
对F0进行插值处理
|
16 |
+
"""
|
17 |
+
|
18 |
+
data = np.reshape(f0, (f0.size, 1))
|
19 |
+
|
20 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
21 |
+
vuv_vector[data > 0.0] = 1.0
|
22 |
+
vuv_vector[data <= 0.0] = 0.0
|
23 |
+
|
24 |
+
ip_data = data
|
25 |
+
|
26 |
+
frame_number = data.size
|
27 |
+
last_value = 0.0
|
28 |
+
for i in range(frame_number):
|
29 |
+
if data[i] <= 0.0:
|
30 |
+
j = i + 1
|
31 |
+
for j in range(i + 1, frame_number):
|
32 |
+
if data[j] > 0.0:
|
33 |
+
break
|
34 |
+
if j < frame_number - 1:
|
35 |
+
if last_value > 0.0:
|
36 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
37 |
+
for k in range(i, j):
|
38 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
39 |
+
else:
|
40 |
+
for k in range(i, j):
|
41 |
+
ip_data[k] = data[j]
|
42 |
+
else:
|
43 |
+
for k in range(i, frame_number):
|
44 |
+
ip_data[k] = last_value
|
45 |
+
else:
|
46 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
47 |
+
last_value = data[i]
|
48 |
+
|
49 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
50 |
+
|
51 |
+
def resize_f0(self, x, target_len):
|
52 |
+
source = np.array(x)
|
53 |
+
source[source < 0.001] = np.nan
|
54 |
+
target = np.interp(
|
55 |
+
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
56 |
+
np.arange(0, len(source)),
|
57 |
+
source,
|
58 |
+
)
|
59 |
+
res = np.nan_to_num(target)
|
60 |
+
return res
|
61 |
+
|
62 |
+
def compute_f0(self, wav, p_len=None):
|
63 |
+
if p_len is None:
|
64 |
+
p_len = wav.shape[0] // self.hop_length
|
65 |
+
f0, t = pyworld.harvest(
|
66 |
+
wav.astype(np.double),
|
67 |
+
fs=self.hop_length,
|
68 |
+
f0_ceil=self.f0_max,
|
69 |
+
f0_floor=self.f0_min,
|
70 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
71 |
+
)
|
72 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
|
73 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
74 |
+
|
75 |
+
def compute_f0_uv(self, wav, p_len=None):
|
76 |
+
if p_len is None:
|
77 |
+
p_len = wav.shape[0] // self.hop_length
|
78 |
+
f0, t = pyworld.harvest(
|
79 |
+
wav.astype(np.double),
|
80 |
+
fs=self.sampling_rate,
|
81 |
+
f0_floor=self.f0_min,
|
82 |
+
f0_ceil=self.f0_max,
|
83 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
84 |
+
)
|
85 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
86 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
infer_pack/modules/F0Predictor/PMF0Predictor.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
2 |
+
import parselmouth
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
class PMF0Predictor(F0Predictor):
|
7 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
8 |
+
self.hop_length = hop_length
|
9 |
+
self.f0_min = f0_min
|
10 |
+
self.f0_max = f0_max
|
11 |
+
self.sampling_rate = sampling_rate
|
12 |
+
|
13 |
+
def interpolate_f0(self, f0):
|
14 |
+
"""
|
15 |
+
对F0进行插值处理
|
16 |
+
"""
|
17 |
+
|
18 |
+
data = np.reshape(f0, (f0.size, 1))
|
19 |
+
|
20 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
21 |
+
vuv_vector[data > 0.0] = 1.0
|
22 |
+
vuv_vector[data <= 0.0] = 0.0
|
23 |
+
|
24 |
+
ip_data = data
|
25 |
+
|
26 |
+
frame_number = data.size
|
27 |
+
last_value = 0.0
|
28 |
+
for i in range(frame_number):
|
29 |
+
if data[i] <= 0.0:
|
30 |
+
j = i + 1
|
31 |
+
for j in range(i + 1, frame_number):
|
32 |
+
if data[j] > 0.0:
|
33 |
+
break
|
34 |
+
if j < frame_number - 1:
|
35 |
+
if last_value > 0.0:
|
36 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
37 |
+
for k in range(i, j):
|
38 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
39 |
+
else:
|
40 |
+
for k in range(i, j):
|
41 |
+
ip_data[k] = data[j]
|
42 |
+
else:
|
43 |
+
for k in range(i, frame_number):
|
44 |
+
ip_data[k] = last_value
|
45 |
+
else:
|
46 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
47 |
+
last_value = data[i]
|
48 |
+
|
49 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
50 |
+
|
51 |
+
def compute_f0(self, wav, p_len=None):
|
52 |
+
x = wav
|
53 |
+
if p_len is None:
|
54 |
+
p_len = x.shape[0] // self.hop_length
|
55 |
+
else:
|
56 |
+
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
57 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
58 |
+
f0 = (
|
59 |
+
parselmouth.Sound(x, self.sampling_rate)
|
60 |
+
.to_pitch_ac(
|
61 |
+
time_step=time_step / 1000,
|
62 |
+
voicing_threshold=0.6,
|
63 |
+
pitch_floor=self.f0_min,
|
64 |
+
pitch_ceiling=self.f0_max,
|
65 |
+
)
|
66 |
+
.selected_array["frequency"]
|
67 |
+
)
|
68 |
+
|
69 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
70 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
71 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
72 |
+
f0, uv = self.interpolate_f0(f0)
|
73 |
+
return f0
|
74 |
+
|
75 |
+
def compute_f0_uv(self, wav, p_len=None):
|
76 |
+
x = wav
|
77 |
+
if p_len is None:
|
78 |
+
p_len = x.shape[0] // self.hop_length
|
79 |
+
else:
|
80 |
+
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
81 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
82 |
+
f0 = (
|
83 |
+
parselmouth.Sound(x, self.sampling_rate)
|
84 |
+
.to_pitch_ac(
|
85 |
+
time_step=time_step / 1000,
|
86 |
+
voicing_threshold=0.6,
|
87 |
+
pitch_floor=self.f0_min,
|
88 |
+
pitch_ceiling=self.f0_max,
|
89 |
+
)
|
90 |
+
.selected_array["frequency"]
|
91 |
+
)
|
92 |
+
|
93 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
94 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
95 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
96 |
+
f0, uv = self.interpolate_f0(f0)
|
97 |
+
return f0, uv
|
infer_pack/modules/F0Predictor/__init__.py
ADDED
File without changes
|
infer_pack/transforms.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
7 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
8 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
9 |
+
|
10 |
+
|
11 |
+
def piecewise_rational_quadratic_transform(
|
12 |
+
inputs,
|
13 |
+
unnormalized_widths,
|
14 |
+
unnormalized_heights,
|
15 |
+
unnormalized_derivatives,
|
16 |
+
inverse=False,
|
17 |
+
tails=None,
|
18 |
+
tail_bound=1.0,
|
19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
22 |
+
):
|
23 |
+
if tails is None:
|
24 |
+
spline_fn = rational_quadratic_spline
|
25 |
+
spline_kwargs = {}
|
26 |
+
else:
|
27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
29 |
+
|
30 |
+
outputs, logabsdet = spline_fn(
|
31 |
+
inputs=inputs,
|
32 |
+
unnormalized_widths=unnormalized_widths,
|
33 |
+
unnormalized_heights=unnormalized_heights,
|
34 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
35 |
+
inverse=inverse,
|
36 |
+
min_bin_width=min_bin_width,
|
37 |
+
min_bin_height=min_bin_height,
|
38 |
+
min_derivative=min_derivative,
|
39 |
+
**spline_kwargs
|
40 |
+
)
|
41 |
+
return outputs, logabsdet
|
42 |
+
|
43 |
+
|
44 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
45 |
+
bin_locations[..., -1] += eps
|
46 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
47 |
+
|
48 |
+
|
49 |
+
def unconstrained_rational_quadratic_spline(
|
50 |
+
inputs,
|
51 |
+
unnormalized_widths,
|
52 |
+
unnormalized_heights,
|
53 |
+
unnormalized_derivatives,
|
54 |
+
inverse=False,
|
55 |
+
tails="linear",
|
56 |
+
tail_bound=1.0,
|
57 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
58 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
59 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
60 |
+
):
|
61 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
62 |
+
outside_interval_mask = ~inside_interval_mask
|
63 |
+
|
64 |
+
outputs = torch.zeros_like(inputs)
|
65 |
+
logabsdet = torch.zeros_like(inputs)
|
66 |
+
|
67 |
+
if tails == "linear":
|
68 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
69 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
70 |
+
unnormalized_derivatives[..., 0] = constant
|
71 |
+
unnormalized_derivatives[..., -1] = constant
|
72 |
+
|
73 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
74 |
+
logabsdet[outside_interval_mask] = 0
|
75 |
+
else:
|
76 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
77 |
+
|
78 |
+
(
|
79 |
+
outputs[inside_interval_mask],
|
80 |
+
logabsdet[inside_interval_mask],
|
81 |
+
) = rational_quadratic_spline(
|
82 |
+
inputs=inputs[inside_interval_mask],
|
83 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
84 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
85 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
86 |
+
inverse=inverse,
|
87 |
+
left=-tail_bound,
|
88 |
+
right=tail_bound,
|
89 |
+
bottom=-tail_bound,
|
90 |
+
top=tail_bound,
|
91 |
+
min_bin_width=min_bin_width,
|
92 |
+
min_bin_height=min_bin_height,
|
93 |
+
min_derivative=min_derivative,
|
94 |
+
)
|
95 |
+
|
96 |
+
return outputs, logabsdet
|
97 |
+
|
98 |
+
|
99 |
+
def rational_quadratic_spline(
|
100 |
+
inputs,
|
101 |
+
unnormalized_widths,
|
102 |
+
unnormalized_heights,
|
103 |
+
unnormalized_derivatives,
|
104 |
+
inverse=False,
|
105 |
+
left=0.0,
|
106 |
+
right=1.0,
|
107 |
+
bottom=0.0,
|
108 |
+
top=1.0,
|
109 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
110 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
111 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
112 |
+
):
|
113 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
114 |
+
raise ValueError("Input to a transform is not within its domain")
|
115 |
+
|
116 |
+
num_bins = unnormalized_widths.shape[-1]
|
117 |
+
|
118 |
+
if min_bin_width * num_bins > 1.0:
|
119 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
120 |
+
if min_bin_height * num_bins > 1.0:
|
121 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
122 |
+
|
123 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
124 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
125 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
126 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
127 |
+
cumwidths = (right - left) * cumwidths + left
|
128 |
+
cumwidths[..., 0] = left
|
129 |
+
cumwidths[..., -1] = right
|
130 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
131 |
+
|
132 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
133 |
+
|
134 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
135 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
136 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
137 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
138 |
+
cumheights = (top - bottom) * cumheights + bottom
|
139 |
+
cumheights[..., 0] = bottom
|
140 |
+
cumheights[..., -1] = top
|
141 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
142 |
+
|
143 |
+
if inverse:
|
144 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
145 |
+
else:
|
146 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
147 |
+
|
148 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
149 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
150 |
+
|
151 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
152 |
+
delta = heights / widths
|
153 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
154 |
+
|
155 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
156 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
157 |
+
|
158 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
159 |
+
|
160 |
+
if inverse:
|
161 |
+
a = (inputs - input_cumheights) * (
|
162 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
163 |
+
) + input_heights * (input_delta - input_derivatives)
|
164 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
165 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
166 |
+
)
|
167 |
+
c = -input_delta * (inputs - input_cumheights)
|
168 |
+
|
169 |
+
discriminant = b.pow(2) - 4 * a * c
|
170 |
+
assert (discriminant >= 0).all()
|
171 |
+
|
172 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
173 |
+
outputs = root * input_bin_widths + input_cumwidths
|
174 |
+
|
175 |
+
theta_one_minus_theta = root * (1 - root)
|
176 |
+
denominator = input_delta + (
|
177 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
178 |
+
* theta_one_minus_theta
|
179 |
+
)
|
180 |
+
derivative_numerator = input_delta.pow(2) * (
|
181 |
+
input_derivatives_plus_one * root.pow(2)
|
182 |
+
+ 2 * input_delta * theta_one_minus_theta
|
183 |
+
+ input_derivatives * (1 - root).pow(2)
|
184 |
+
)
|
185 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
186 |
+
|
187 |
+
return outputs, -logabsdet
|
188 |
+
else:
|
189 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
190 |
+
theta_one_minus_theta = theta * (1 - theta)
|
191 |
+
|
192 |
+
numerator = input_heights * (
|
193 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
194 |
+
)
|
195 |
+
denominator = input_delta + (
|
196 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
197 |
+
* theta_one_minus_theta
|
198 |
+
)
|
199 |
+
outputs = input_cumheights + numerator / denominator
|
200 |
+
|
201 |
+
derivative_numerator = input_delta.pow(2) * (
|
202 |
+
input_derivatives_plus_one * theta.pow(2)
|
203 |
+
+ 2 * input_delta * theta_one_minus_theta
|
204 |
+
+ input_derivatives * (1 - theta).pow(2)
|
205 |
+
)
|
206 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
207 |
+
|
208 |
+
return outputs, logabsdet
|
infer_web.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from vc_infer_pipeline import VC
|
2 |
+
from myutils import Audio
|
3 |
+
from infer_pack.models import (
|
4 |
+
SynthesizerTrnMs256NSFsid,
|
5 |
+
SynthesizerTrnMs256NSFsid_nono,
|
6 |
+
SynthesizerTrnMs768NSFsid,
|
7 |
+
SynthesizerTrnMs768NSFsid_nono,
|
8 |
+
)
|
9 |
+
from fairseq import checkpoint_utils
|
10 |
+
from config import Config
|
11 |
+
import torch
|
12 |
+
import numpy as np
|
13 |
+
import traceback
|
14 |
+
import os
|
15 |
+
import sys
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
now_dir = os.getcwd()
|
19 |
+
sys.path.append(now_dir)
|
20 |
+
os.makedirs(os.path.join(now_dir, "audios"), exist_ok=True)
|
21 |
+
os.makedirs(os.path.join(now_dir, "audio-outputs"), exist_ok=True)
|
22 |
+
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
23 |
+
warnings.filterwarnings("ignore")
|
24 |
+
torch.manual_seed(114514)
|
25 |
+
|
26 |
+
config = Config()
|
27 |
+
|
28 |
+
hubert_model = None
|
29 |
+
weight_root = "weights"
|
30 |
+
|
31 |
+
def load_hubert():
|
32 |
+
# Determinar si existe una tarjeta N que pueda usarse para entrenar y acelerar la inferencia.
|
33 |
+
global hubert_model
|
34 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
35 |
+
["hubert_base.pt"],
|
36 |
+
suffix="",
|
37 |
+
)
|
38 |
+
hubert_model = models[0]
|
39 |
+
hubert_model = hubert_model.to(config.device)
|
40 |
+
if config.is_half:
|
41 |
+
hubert_model = hubert_model.half()
|
42 |
+
else:
|
43 |
+
hubert_model = hubert_model.float()
|
44 |
+
hubert_model.eval()
|
45 |
+
|
46 |
+
def vc_single(
|
47 |
+
sid,
|
48 |
+
input_audio_path0,
|
49 |
+
input_audio_path1,
|
50 |
+
f0_up_key,
|
51 |
+
f0_file,
|
52 |
+
f0_method,
|
53 |
+
file_index,
|
54 |
+
file_index2,
|
55 |
+
# file_big_npy,
|
56 |
+
index_rate,
|
57 |
+
filter_radius,
|
58 |
+
resample_sr,
|
59 |
+
rms_mix_rate,
|
60 |
+
protect,
|
61 |
+
crepe_hop_length,
|
62 |
+
):
|
63 |
+
global tgt_sr, net_g, vc, hubert_model, version
|
64 |
+
if input_audio_path0 is None or input_audio_path0 is None:
|
65 |
+
return "You need to upload an audio", None
|
66 |
+
f0_up_key = int(f0_up_key)
|
67 |
+
try:
|
68 |
+
if input_audio_path0 == "":
|
69 |
+
audio = Audio.load_audio(input_audio_path1, 16000)
|
70 |
+
else:
|
71 |
+
audio = Audio.load_audio(input_audio_path0, 16000)
|
72 |
+
|
73 |
+
audio_max = np.abs(audio).max() / 0.95
|
74 |
+
if audio_max > 1:
|
75 |
+
audio /= audio_max
|
76 |
+
times = [0, 0, 0]
|
77 |
+
if not hubert_model:
|
78 |
+
load_hubert()
|
79 |
+
if_f0 = cpt.get("f0", 1)
|
80 |
+
file_index = (
|
81 |
+
(
|
82 |
+
file_index.strip(" ")
|
83 |
+
.strip('"')
|
84 |
+
.strip("\n")
|
85 |
+
.strip('"')
|
86 |
+
.strip(" ")
|
87 |
+
.replace("trained", "added")
|
88 |
+
)
|
89 |
+
if file_index != ""
|
90 |
+
else file_index2
|
91 |
+
)
|
92 |
+
|
93 |
+
audio_opt = vc.pipeline(
|
94 |
+
hubert_model,
|
95 |
+
net_g,
|
96 |
+
sid,
|
97 |
+
audio,
|
98 |
+
input_audio_path1,
|
99 |
+
times,
|
100 |
+
f0_up_key,
|
101 |
+
f0_method,
|
102 |
+
file_index,
|
103 |
+
# file_big_npy,
|
104 |
+
index_rate,
|
105 |
+
if_f0,
|
106 |
+
filter_radius,
|
107 |
+
tgt_sr,
|
108 |
+
resample_sr,
|
109 |
+
rms_mix_rate,
|
110 |
+
version,
|
111 |
+
protect,
|
112 |
+
crepe_hop_length,
|
113 |
+
f0_file=f0_file,
|
114 |
+
)
|
115 |
+
if tgt_sr != resample_sr >= 16000:
|
116 |
+
tgt_sr = resample_sr
|
117 |
+
index_info = (
|
118 |
+
"Using index:%s." % file_index
|
119 |
+
if os.path.exists(file_index)
|
120 |
+
else "Index not used."
|
121 |
+
)
|
122 |
+
print(index_info)
|
123 |
+
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
124 |
+
index_info,
|
125 |
+
times[0],
|
126 |
+
times[1],
|
127 |
+
times[2],
|
128 |
+
), (tgt_sr, audio_opt)
|
129 |
+
except:
|
130 |
+
info = traceback.format_exc()
|
131 |
+
print(info)
|
132 |
+
return info, (None, None)
|
133 |
+
|
134 |
+
def get_vc(model_name):
|
135 |
+
global tgt_sr, net_g, vc, cpt, version
|
136 |
+
|
137 |
+
# Comprobar si se pasó uno o varios modelos
|
138 |
+
if model_name == "" or model_name == []:
|
139 |
+
global hubert_model
|
140 |
+
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
141 |
+
print("Limpiar caché")
|
142 |
+
del net_g, vc, hubert_model, tgt_sr # ,cpt
|
143 |
+
hubert_model = net_g = vc = hubert_model = tgt_sr = None
|
144 |
+
|
145 |
+
# Si hay una GPU disponible, libera la memoria de la GPU
|
146 |
+
if torch.cuda.is_available():
|
147 |
+
torch.cuda.empty_cache()
|
148 |
+
|
149 |
+
# Bloque de abajo no limpia completamente
|
150 |
+
if_f0 = cpt.get("f0", 1)
|
151 |
+
version = cpt.get("version", "v1")
|
152 |
+
if version == "v1":
|
153 |
+
if if_f0 == 1:
|
154 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
155 |
+
*cpt["config"], is_half=config.is_half
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
159 |
+
elif version == "v2":
|
160 |
+
if if_f0 == 1:
|
161 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
162 |
+
*cpt["config"], is_half=config.is_half
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
166 |
+
|
167 |
+
del net_g, cpt
|
168 |
+
if torch.cuda.is_available():
|
169 |
+
torch.cuda.empty_cache()
|
170 |
+
cpt = None
|
171 |
+
return {"success": False, "message": "No se proporcionó un sid"}
|
172 |
+
|
173 |
+
person = "%s/%s" % (weight_root, model_name)
|
174 |
+
print("Cargando %s" % person)
|
175 |
+
cpt = torch.load(person, map_location="cpu")
|
176 |
+
tgt_sr = cpt["config"][-1]
|
177 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
178 |
+
if_f0 = cpt.get("f0", 1)
|
179 |
+
version = cpt.get("version", "v1")
|
180 |
+
|
181 |
+
if version == "v1":
|
182 |
+
if if_f0 == 1:
|
183 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
184 |
+
*cpt["config"], is_half=config.is_half)
|
185 |
+
else:
|
186 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
187 |
+
elif version == "v2":
|
188 |
+
if if_f0 == 1:
|
189 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
190 |
+
*cpt["config"], is_half=config.is_half)
|
191 |
+
else:
|
192 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
193 |
+
del net_g.enc_q
|
194 |
+
|
195 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
196 |
+
net_g.eval().to(config.device)
|
197 |
+
if config.is_half:
|
198 |
+
net_g = net_g.half()
|
199 |
+
else:
|
200 |
+
net_g = net_g.float()
|
201 |
+
vc = VC(tgt_sr, config)
|
inference.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import infer_web
|
2 |
+
import wget
|
3 |
+
import os
|
4 |
+
import scipy.io.wavfile as wavfile
|
5 |
+
from utils import model
|
6 |
+
import validators
|
7 |
+
from myutils import delete_files
|
8 |
+
|
9 |
+
class Inference:
|
10 |
+
|
11 |
+
inference_cont = 0
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
model_name=None,
|
16 |
+
source_audio_path=None,
|
17 |
+
output_file_name=None,
|
18 |
+
feature_index_path="",
|
19 |
+
f0_file=None,
|
20 |
+
speaker_id=0,
|
21 |
+
transposition=-2,
|
22 |
+
f0_method="harvest",
|
23 |
+
crepe_hop_length=160,
|
24 |
+
harvest_median_filter=3,
|
25 |
+
resample=0,
|
26 |
+
mix=1,
|
27 |
+
feature_ratio=0.78,
|
28 |
+
protection_amnt=0.33,
|
29 |
+
protect1=False
|
30 |
+
):
|
31 |
+
Inference.inference_cont += 1
|
32 |
+
self._model_name = model_name
|
33 |
+
self._source_audio_path = source_audio_path
|
34 |
+
self._output_file_name = output_file_name
|
35 |
+
self._feature_index_path = feature_index_path
|
36 |
+
self._f0_file = f0_file
|
37 |
+
self._speaker_id = speaker_id
|
38 |
+
self._transposition = transposition
|
39 |
+
self._f0_method = f0_method
|
40 |
+
self._crepe_hop_length = crepe_hop_length
|
41 |
+
self._harvest_median_filter = harvest_median_filter
|
42 |
+
self._resample = resample
|
43 |
+
self._mix = mix
|
44 |
+
self._feature_ratio = feature_ratio
|
45 |
+
self._protection_amnt = protection_amnt
|
46 |
+
self._protect1 = protect1
|
47 |
+
self._id = Inference.inference_cont
|
48 |
+
|
49 |
+
if not os.path.exists("./hubert_base.pt"):
|
50 |
+
wget.download(
|
51 |
+
"https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt", out="./hubert_base.pt")
|
52 |
+
|
53 |
+
@property
|
54 |
+
def id(self):
|
55 |
+
return self._id
|
56 |
+
|
57 |
+
@id.setter
|
58 |
+
def id(self, id):
|
59 |
+
self._id = id
|
60 |
+
|
61 |
+
@property
|
62 |
+
def audio(self):
|
63 |
+
return self._audio
|
64 |
+
|
65 |
+
@audio.setter
|
66 |
+
def audio_file(self, audio):
|
67 |
+
self._audio_file = audio
|
68 |
+
|
69 |
+
@property
|
70 |
+
def model_name(self):
|
71 |
+
return self._model_name
|
72 |
+
|
73 |
+
@model_name.setter
|
74 |
+
def model_name(self, model_name):
|
75 |
+
self._model_name = model_name
|
76 |
+
|
77 |
+
@property
|
78 |
+
def source_audio_path(self):
|
79 |
+
return self._source_audio_path
|
80 |
+
|
81 |
+
@source_audio_path.setter
|
82 |
+
def source_audio_path(self, source_audio_path):
|
83 |
+
if not self._output_file_name:
|
84 |
+
self._output_file_name = os.path.join("./audio-outputs", os.path.basename(source_audio_path))
|
85 |
+
self._source_audio_path = source_audio_path
|
86 |
+
|
87 |
+
@property
|
88 |
+
def output_file_name(self):
|
89 |
+
return self._output_file_name
|
90 |
+
|
91 |
+
@output_file_name.setter
|
92 |
+
def output_file_name(self, output_file_name):
|
93 |
+
self._output_file_name = output_file_name
|
94 |
+
|
95 |
+
@property
|
96 |
+
def feature_index_path(self):
|
97 |
+
return self._feature_index_path
|
98 |
+
|
99 |
+
@feature_index_path.setter
|
100 |
+
def feature_index_path(self, feature_index_path):
|
101 |
+
self._feature_index_path = feature_index_path
|
102 |
+
|
103 |
+
@property
|
104 |
+
def f0_file(self):
|
105 |
+
return self._f0_file
|
106 |
+
|
107 |
+
@f0_file.setter
|
108 |
+
def f0_file(self, f0_file):
|
109 |
+
self._f0_file = f0_file
|
110 |
+
|
111 |
+
@property
|
112 |
+
def speaker_id(self):
|
113 |
+
return self._speaker_id
|
114 |
+
|
115 |
+
@speaker_id.setter
|
116 |
+
def speaker_id(self, speaker_id):
|
117 |
+
self._speaker_id = speaker_id
|
118 |
+
|
119 |
+
@property
|
120 |
+
def transposition(self):
|
121 |
+
return self._transposition
|
122 |
+
|
123 |
+
@transposition.setter
|
124 |
+
def transposition(self, transposition):
|
125 |
+
self._transposition = transposition
|
126 |
+
|
127 |
+
@property
|
128 |
+
def f0_method(self):
|
129 |
+
return self._f0_method
|
130 |
+
|
131 |
+
@f0_method.setter
|
132 |
+
def f0_method(self, f0_method):
|
133 |
+
self._f0_method = f0_method
|
134 |
+
|
135 |
+
@property
|
136 |
+
def crepe_hop_length(self):
|
137 |
+
return self._crepe_hop_length
|
138 |
+
|
139 |
+
@crepe_hop_length.setter
|
140 |
+
def crepe_hop_length(self, crepe_hop_length):
|
141 |
+
self._crepe_hop_length = crepe_hop_length
|
142 |
+
|
143 |
+
@property
|
144 |
+
def harvest_median_filter(self):
|
145 |
+
return self._harvest_median_filter
|
146 |
+
|
147 |
+
@crepe_hop_length.setter
|
148 |
+
def harvest_median_filter(self, harvest_median_filter):
|
149 |
+
self._harvest_median_filter = harvest_median_filter
|
150 |
+
|
151 |
+
@property
|
152 |
+
def resample(self):
|
153 |
+
return self._resample
|
154 |
+
|
155 |
+
@resample.setter
|
156 |
+
def resample(self, resample):
|
157 |
+
self._resample = resample
|
158 |
+
|
159 |
+
@property
|
160 |
+
def mix(self):
|
161 |
+
return self._mix
|
162 |
+
|
163 |
+
@mix.setter
|
164 |
+
def mix(self, mix):
|
165 |
+
self._mix = mix
|
166 |
+
|
167 |
+
@property
|
168 |
+
def feature_ratio(self):
|
169 |
+
return self._feature_ratio
|
170 |
+
|
171 |
+
@feature_ratio.setter
|
172 |
+
def feature_ratio(self, feature_ratio):
|
173 |
+
self._feature_ratio = feature_ratio
|
174 |
+
|
175 |
+
@property
|
176 |
+
def protection_amnt(self):
|
177 |
+
return self._protection_amnt
|
178 |
+
|
179 |
+
@protection_amnt.setter
|
180 |
+
def protection_amnt(self, protection_amnt):
|
181 |
+
self._protection_amnt = protection_amnt
|
182 |
+
|
183 |
+
@property
|
184 |
+
def protect1(self):
|
185 |
+
return self._protect1
|
186 |
+
|
187 |
+
@protect1.setter
|
188 |
+
def protect1(self, protect1):
|
189 |
+
self._protect1 = protect1
|
190 |
+
|
191 |
+
def run(self):
|
192 |
+
current_dir = os.getcwd()
|
193 |
+
modelname = model.model_downloader(self._model_name, "./zips/", "./weights/")
|
194 |
+
|
195 |
+
model_info = model.get_model(os.path.join(current_dir, 'weights') , modelname)
|
196 |
+
index = model_info.get('index', '')
|
197 |
+
pth = model_info.get('pth', None)
|
198 |
+
|
199 |
+
infer_web.get_vc(pth)
|
200 |
+
|
201 |
+
conversion_data = infer_web.vc_single(
|
202 |
+
self.speaker_id,
|
203 |
+
self.source_audio_path,
|
204 |
+
self.source_audio_path,
|
205 |
+
self.transposition,
|
206 |
+
self.f0_file,
|
207 |
+
self.f0_method,
|
208 |
+
index,
|
209 |
+
index,
|
210 |
+
self.feature_ratio,
|
211 |
+
self.harvest_median_filter,
|
212 |
+
self.resample,
|
213 |
+
self.mix,
|
214 |
+
self.protection_amnt,
|
215 |
+
self.crepe_hop_length,
|
216 |
+
)
|
217 |
+
|
218 |
+
if "Success." in conversion_data[0]:
|
219 |
+
wavfile.write(
|
220 |
+
"%s/%s" % ("audio-outputs",os.path.basename(self._output_file_name)),
|
221 |
+
conversion_data[1][0],
|
222 |
+
conversion_data[1][1],
|
223 |
+
)
|
224 |
+
return({
|
225 |
+
"success": True,
|
226 |
+
"file": self._output_file_name
|
227 |
+
})
|
228 |
+
else:
|
229 |
+
return({
|
230 |
+
"success": False,
|
231 |
+
"file": self._output_file_name
|
232 |
+
})
|
233 |
+
#print(conversion_data[0])
|
myutils.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os
|
3 |
+
import ffmpeg
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
import shutil
|
7 |
+
import torchaudio
|
8 |
+
from pydub import AudioSegment
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
class Audio:
|
12 |
+
|
13 |
+
audio_path = "./audios"
|
14 |
+
|
15 |
+
def __init__(self, name, url):
|
16 |
+
self._name = name
|
17 |
+
self._url = url
|
18 |
+
|
19 |
+
if not os.path.exists(Audio.audio_path):
|
20 |
+
os.mkdir(Audio.audio_path)
|
21 |
+
|
22 |
+
@property
|
23 |
+
def name(self):
|
24 |
+
return self._name
|
25 |
+
|
26 |
+
@name.setter
|
27 |
+
def name(self, name):
|
28 |
+
self._name = name
|
29 |
+
|
30 |
+
@property
|
31 |
+
def url(self):
|
32 |
+
return self._url
|
33 |
+
|
34 |
+
@url.setter
|
35 |
+
def url(self, url):
|
36 |
+
self._url = url
|
37 |
+
|
38 |
+
def __str__(self):
|
39 |
+
return f'Audio: {self._name} {self._url}'
|
40 |
+
|
41 |
+
@classmethod
|
42 |
+
def load_audio(cls, file, sr):
|
43 |
+
try:
|
44 |
+
file = file.strip(' "\n') # Eliminar espacios y comillas del nombre del archivo
|
45 |
+
# Convertir a formato WAV si no lo está
|
46 |
+
if not file.endswith(".wav"):
|
47 |
+
file_formanted = f"{file}.wav"
|
48 |
+
if not os.path.isfile(file_formanted):
|
49 |
+
(
|
50 |
+
ffmpeg.input(file)
|
51 |
+
.output(file_formanted, format="wav")
|
52 |
+
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
53 |
+
)
|
54 |
+
else:
|
55 |
+
file_formanted = file
|
56 |
+
|
57 |
+
# Cargar el archivo formateado y devolverlo como NumPy array
|
58 |
+
out, _ = (
|
59 |
+
ffmpeg.input(file_formanted)
|
60 |
+
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
61 |
+
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
62 |
+
)
|
63 |
+
|
64 |
+
# Eliminar el archivo formateado
|
65 |
+
os.remove(file_formanted)
|
66 |
+
except Exception as e:
|
67 |
+
raise RuntimeError(f"Failed to load audio: {e}")
|
68 |
+
|
69 |
+
return np.frombuffer(out, np.float32).flatten()
|
70 |
+
|
71 |
+
@classmethod
|
72 |
+
def dowload_from_url(self, url = None, output = "./audios/file.wav"):
|
73 |
+
"""
|
74 |
+
Descarga un aduio desde una url
|
75 |
+
Args:
|
76 |
+
path: Folder where the audio will be downloaded
|
77 |
+
Returns:
|
78 |
+
return: the path of the downloaded audio
|
79 |
+
"""
|
80 |
+
request = requests.get(url, allow_redirects=True)
|
81 |
+
open(output, 'wb').write(request.content)
|
82 |
+
|
83 |
+
return output
|
84 |
+
|
85 |
+
|
86 |
+
def delete_files(paths):
|
87 |
+
for path in paths:
|
88 |
+
if os.path.exists(path):
|
89 |
+
if os.path.isdir(path):
|
90 |
+
shutil.rmtree(path, ignore_errors=True)
|
91 |
+
if os.path.isfile(path):
|
92 |
+
os.remove(path)
|
requirements.txt
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
aiofiles==23.1.0
|
3 |
+
aiohttp==3.8.3
|
4 |
+
aiosignal==1.3.1
|
5 |
+
altair==4.2.0
|
6 |
+
antlr4-python3-runtime==4.8
|
7 |
+
anyio==3.6.2
|
8 |
+
appdirs==1.4.4
|
9 |
+
asttokens==2.2.1
|
10 |
+
async-timeout==4.0.2
|
11 |
+
attrs==21.4.0
|
12 |
+
audioread==2.1.9
|
13 |
+
backcall==0.2.0
|
14 |
+
beautifulsoup4==4.12.2
|
15 |
+
bitarray==2.5.1
|
16 |
+
bs4==0.0.1
|
17 |
+
cachetools==5.3.0
|
18 |
+
certifi==2022.12.7
|
19 |
+
cffi==1.15.1
|
20 |
+
charset-normalizer==2.1.1
|
21 |
+
click==8.1.3
|
22 |
+
colorama==0.4.6
|
23 |
+
coloredlogs==15.0.1
|
24 |
+
contourpy==1.0.6
|
25 |
+
cycler==0.11.0
|
26 |
+
Cython==0.29.30
|
27 |
+
decorator==5.1.1
|
28 |
+
discord.py==2.3.2
|
29 |
+
edge-tts==6.1.5
|
30 |
+
elevenlabs==0.2.21
|
31 |
+
entrypoints==0.4
|
32 |
+
exceptiongroup==1.1.3
|
33 |
+
executing==1.2.0
|
34 |
+
fairseq==0.12.2
|
35 |
+
faiss-cpu==1.7.2
|
36 |
+
fastapi==0.88.0
|
37 |
+
ffmpeg-python==0.2.0
|
38 |
+
ffmpy==0.3.1
|
39 |
+
filelock==3.10.0
|
40 |
+
flatbuffers==23.5.9
|
41 |
+
fonttools==4.38.0
|
42 |
+
frozenlist==1.3.3
|
43 |
+
fsspec==2022.11.0
|
44 |
+
future==0.18.2
|
45 |
+
google-auth==2.16.2
|
46 |
+
google-auth-oauthlib==1.0.0
|
47 |
+
gradio==3.34.0
|
48 |
+
gradio_client==0.2.10
|
49 |
+
grpcio==1.51.3
|
50 |
+
gspread==5.10.0
|
51 |
+
gTTS==2.3.2
|
52 |
+
h11==0.12.0
|
53 |
+
httpcore==0.15.0
|
54 |
+
httpx==0.23.0
|
55 |
+
huggingface-hub==0.16.4
|
56 |
+
humanfriendly==10.0
|
57 |
+
hydra-core==1.0.7
|
58 |
+
idna==3.4
|
59 |
+
importlib-metadata==6.0.0
|
60 |
+
importlib-resources==6.0.0
|
61 |
+
ipython
|
62 |
+
jedi==0.18.2
|
63 |
+
Jinja2==3.1.2
|
64 |
+
joblib==1.2.0
|
65 |
+
json5==0.9.14
|
66 |
+
jsonschema==4.17.3
|
67 |
+
kiwisolver==1.4.4
|
68 |
+
librosa==0.9.1
|
69 |
+
linkify-it-py==1.0.3
|
70 |
+
llvmlite==0.39.1
|
71 |
+
lxml==4.9.3
|
72 |
+
Markdown==3.4.3
|
73 |
+
markdown-it-py==2.2.0
|
74 |
+
MarkupSafe==2.1.1
|
75 |
+
matplotlib==3.6.2
|
76 |
+
matplotlib-inline==0.1.6
|
77 |
+
mdit-py-plugins==0.3.3
|
78 |
+
mdurl==0.1.1
|
79 |
+
mega.py==1.0.8
|
80 |
+
mpmath==1.2.1
|
81 |
+
multidict==6.0.3
|
82 |
+
networkx==2.8.8
|
83 |
+
noisereduce==2.0.1
|
84 |
+
numba==0.56.4
|
85 |
+
numpy==1.23.5
|
86 |
+
oauthlib==3.2.2
|
87 |
+
omegaconf==2.0.6
|
88 |
+
onnx==1.14.0
|
89 |
+
onnxconverter-common==1.13.0
|
90 |
+
onnxruntime-gpu==1.14.1
|
91 |
+
orjson==3.8.3
|
92 |
+
packaging==22.0
|
93 |
+
pandas==1.5.2
|
94 |
+
parso==0.8.3
|
95 |
+
pathlib==1.0.1
|
96 |
+
pickleshare==0.7.5
|
97 |
+
Pillow==9.3.0
|
98 |
+
pooch==1.6.0
|
99 |
+
portalocker==2.6.0
|
100 |
+
praat-parselmouth==0.4.2
|
101 |
+
praatio==6.0.1
|
102 |
+
prompt-toolkit==3.0.39
|
103 |
+
protobuf==4.22.3
|
104 |
+
pure-eval==0.2.2
|
105 |
+
pyasn1==0.4.8
|
106 |
+
pyasn1-modules==0.2.8
|
107 |
+
pycparser==2.21
|
108 |
+
pycryptodome==3.16.0
|
109 |
+
pydantic==1.10.2
|
110 |
+
pydub==0.25.1
|
111 |
+
Pygments==2.15.1
|
112 |
+
pyparsing==3.0.9
|
113 |
+
pyreadline3==3.4.1
|
114 |
+
pyrsistent==0.19.2
|
115 |
+
PySimpleGUI==4.60.4
|
116 |
+
python-dateutil==2.8.2
|
117 |
+
python-dotenv==1.0.0
|
118 |
+
python-multipart==0.0.5
|
119 |
+
pytz==2022.6
|
120 |
+
pyworld==0.3.2
|
121 |
+
PyYAML==6.0
|
122 |
+
regex==2022.10.31
|
123 |
+
requests==2.28.1
|
124 |
+
requests-oauthlib==1.3.1
|
125 |
+
resampy==0.4.2
|
126 |
+
rfc3986==1.5.0
|
127 |
+
rich==13.3.5
|
128 |
+
rsa==4.9
|
129 |
+
sacrebleu==2.3.1
|
130 |
+
scikit-learn==1.2.0
|
131 |
+
scipy==1.9.3
|
132 |
+
semantic-version==2.10.0
|
133 |
+
six==1.16.0
|
134 |
+
skl2onnx==1.14.1
|
135 |
+
sniffio==1.3.0
|
136 |
+
sounddevice==0.4.6
|
137 |
+
soundfile==0.11.0
|
138 |
+
soupsieve==2.4.1
|
139 |
+
stack-data==0.6.2
|
140 |
+
starlette==0.22.0
|
141 |
+
sympy==1.11.1
|
142 |
+
tabulate==0.9.0
|
143 |
+
tenacity==5.1.5
|
144 |
+
tensorboard==2.13.0
|
145 |
+
tensorboard-data-server==0.7.0
|
146 |
+
tensorboard-plugin-wit==1.8.1
|
147 |
+
tensorboardX==2.6.1
|
148 |
+
threadpoolctl==3.1.0
|
149 |
+
toolz==0.12.0
|
150 |
+
torch==2.0.0
|
151 |
+
torchaudio==2.0.1
|
152 |
+
torchcrepe==0.0.19
|
153 |
+
torchgen==0.0.1
|
154 |
+
tornado==6.3.2
|
155 |
+
tqdm==4.64.1
|
156 |
+
traitlets==5.9.0
|
157 |
+
typing_extensions==4.4.0
|
158 |
+
uc-micro-py==1.0.1
|
159 |
+
urllib3==1.26.13
|
160 |
+
uvicorn==0.20.0
|
161 |
+
wcwidth==0.2.6
|
162 |
+
websockets==10.4
|
163 |
+
Werkzeug==2.2.3
|
164 |
+
wget==3.2
|
165 |
+
yarl==1.8.2
|
166 |
+
zipp==3.15.0
|
167 |
+
firebase
|
168 |
+
firebase_admin
|
169 |
+
gdown
|
170 |
+
validators
|
rmvpe.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys, torch, numpy as np, traceback, pdb
|
2 |
+
import torch.nn as nn
|
3 |
+
from time import time as ttime
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
class BiGRU(nn.Module):
|
8 |
+
def __init__(self, input_features, hidden_features, num_layers):
|
9 |
+
super(BiGRU, self).__init__()
|
10 |
+
self.gru = nn.GRU(
|
11 |
+
input_features,
|
12 |
+
hidden_features,
|
13 |
+
num_layers=num_layers,
|
14 |
+
batch_first=True,
|
15 |
+
bidirectional=True,
|
16 |
+
)
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
return self.gru(x)[0]
|
20 |
+
|
21 |
+
|
22 |
+
class ConvBlockRes(nn.Module):
|
23 |
+
def __init__(self, in_channels, out_channels, momentum=0.01):
|
24 |
+
super(ConvBlockRes, self).__init__()
|
25 |
+
self.conv = nn.Sequential(
|
26 |
+
nn.Conv2d(
|
27 |
+
in_channels=in_channels,
|
28 |
+
out_channels=out_channels,
|
29 |
+
kernel_size=(3, 3),
|
30 |
+
stride=(1, 1),
|
31 |
+
padding=(1, 1),
|
32 |
+
bias=False,
|
33 |
+
),
|
34 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
35 |
+
nn.ReLU(),
|
36 |
+
nn.Conv2d(
|
37 |
+
in_channels=out_channels,
|
38 |
+
out_channels=out_channels,
|
39 |
+
kernel_size=(3, 3),
|
40 |
+
stride=(1, 1),
|
41 |
+
padding=(1, 1),
|
42 |
+
bias=False,
|
43 |
+
),
|
44 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
45 |
+
nn.ReLU(),
|
46 |
+
)
|
47 |
+
if in_channels != out_channels:
|
48 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
49 |
+
self.is_shortcut = True
|
50 |
+
else:
|
51 |
+
self.is_shortcut = False
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
if self.is_shortcut:
|
55 |
+
return self.conv(x) + self.shortcut(x)
|
56 |
+
else:
|
57 |
+
return self.conv(x) + x
|
58 |
+
|
59 |
+
|
60 |
+
class Encoder(nn.Module):
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
in_channels,
|
64 |
+
in_size,
|
65 |
+
n_encoders,
|
66 |
+
kernel_size,
|
67 |
+
n_blocks,
|
68 |
+
out_channels=16,
|
69 |
+
momentum=0.01,
|
70 |
+
):
|
71 |
+
super(Encoder, self).__init__()
|
72 |
+
self.n_encoders = n_encoders
|
73 |
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
74 |
+
self.layers = nn.ModuleList()
|
75 |
+
self.latent_channels = []
|
76 |
+
for i in range(self.n_encoders):
|
77 |
+
self.layers.append(
|
78 |
+
ResEncoderBlock(
|
79 |
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
80 |
+
)
|
81 |
+
)
|
82 |
+
self.latent_channels.append([out_channels, in_size])
|
83 |
+
in_channels = out_channels
|
84 |
+
out_channels *= 2
|
85 |
+
in_size //= 2
|
86 |
+
self.out_size = in_size
|
87 |
+
self.out_channel = out_channels
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
concat_tensors = []
|
91 |
+
x = self.bn(x)
|
92 |
+
for i in range(self.n_encoders):
|
93 |
+
_, x = self.layers[i](x)
|
94 |
+
concat_tensors.append(_)
|
95 |
+
return x, concat_tensors
|
96 |
+
|
97 |
+
|
98 |
+
class ResEncoderBlock(nn.Module):
|
99 |
+
def __init__(
|
100 |
+
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
101 |
+
):
|
102 |
+
super(ResEncoderBlock, self).__init__()
|
103 |
+
self.n_blocks = n_blocks
|
104 |
+
self.conv = nn.ModuleList()
|
105 |
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
106 |
+
for i in range(n_blocks - 1):
|
107 |
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
108 |
+
self.kernel_size = kernel_size
|
109 |
+
if self.kernel_size is not None:
|
110 |
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
for i in range(self.n_blocks):
|
114 |
+
x = self.conv[i](x)
|
115 |
+
if self.kernel_size is not None:
|
116 |
+
return x, self.pool(x)
|
117 |
+
else:
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
class Intermediate(nn.Module): #
|
122 |
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
123 |
+
super(Intermediate, self).__init__()
|
124 |
+
self.n_inters = n_inters
|
125 |
+
self.layers = nn.ModuleList()
|
126 |
+
self.layers.append(
|
127 |
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
128 |
+
)
|
129 |
+
for i in range(self.n_inters - 1):
|
130 |
+
self.layers.append(
|
131 |
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
132 |
+
)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
for i in range(self.n_inters):
|
136 |
+
x = self.layers[i](x)
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
class ResDecoderBlock(nn.Module):
|
141 |
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
142 |
+
super(ResDecoderBlock, self).__init__()
|
143 |
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
144 |
+
self.n_blocks = n_blocks
|
145 |
+
self.conv1 = nn.Sequential(
|
146 |
+
nn.ConvTranspose2d(
|
147 |
+
in_channels=in_channels,
|
148 |
+
out_channels=out_channels,
|
149 |
+
kernel_size=(3, 3),
|
150 |
+
stride=stride,
|
151 |
+
padding=(1, 1),
|
152 |
+
output_padding=out_padding,
|
153 |
+
bias=False,
|
154 |
+
),
|
155 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
156 |
+
nn.ReLU(),
|
157 |
+
)
|
158 |
+
self.conv2 = nn.ModuleList()
|
159 |
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
160 |
+
for i in range(n_blocks - 1):
|
161 |
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
162 |
+
|
163 |
+
def forward(self, x, concat_tensor):
|
164 |
+
x = self.conv1(x)
|
165 |
+
x = torch.cat((x, concat_tensor), dim=1)
|
166 |
+
for i in range(self.n_blocks):
|
167 |
+
x = self.conv2[i](x)
|
168 |
+
return x
|
169 |
+
|
170 |
+
|
171 |
+
class Decoder(nn.Module):
|
172 |
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
173 |
+
super(Decoder, self).__init__()
|
174 |
+
self.layers = nn.ModuleList()
|
175 |
+
self.n_decoders = n_decoders
|
176 |
+
for i in range(self.n_decoders):
|
177 |
+
out_channels = in_channels // 2
|
178 |
+
self.layers.append(
|
179 |
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
180 |
+
)
|
181 |
+
in_channels = out_channels
|
182 |
+
|
183 |
+
def forward(self, x, concat_tensors):
|
184 |
+
for i in range(self.n_decoders):
|
185 |
+
x = self.layers[i](x, concat_tensors[-1 - i])
|
186 |
+
return x
|
187 |
+
|
188 |
+
|
189 |
+
class DeepUnet(nn.Module):
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
kernel_size,
|
193 |
+
n_blocks,
|
194 |
+
en_de_layers=5,
|
195 |
+
inter_layers=4,
|
196 |
+
in_channels=1,
|
197 |
+
en_out_channels=16,
|
198 |
+
):
|
199 |
+
super(DeepUnet, self).__init__()
|
200 |
+
self.encoder = Encoder(
|
201 |
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
202 |
+
)
|
203 |
+
self.intermediate = Intermediate(
|
204 |
+
self.encoder.out_channel // 2,
|
205 |
+
self.encoder.out_channel,
|
206 |
+
inter_layers,
|
207 |
+
n_blocks,
|
208 |
+
)
|
209 |
+
self.decoder = Decoder(
|
210 |
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
211 |
+
)
|
212 |
+
|
213 |
+
def forward(self, x):
|
214 |
+
x, concat_tensors = self.encoder(x)
|
215 |
+
x = self.intermediate(x)
|
216 |
+
x = self.decoder(x, concat_tensors)
|
217 |
+
return x
|
218 |
+
|
219 |
+
|
220 |
+
class E2E(nn.Module):
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
n_blocks,
|
224 |
+
n_gru,
|
225 |
+
kernel_size,
|
226 |
+
en_de_layers=5,
|
227 |
+
inter_layers=4,
|
228 |
+
in_channels=1,
|
229 |
+
en_out_channels=16,
|
230 |
+
):
|
231 |
+
super(E2E, self).__init__()
|
232 |
+
self.unet = DeepUnet(
|
233 |
+
kernel_size,
|
234 |
+
n_blocks,
|
235 |
+
en_de_layers,
|
236 |
+
inter_layers,
|
237 |
+
in_channels,
|
238 |
+
en_out_channels,
|
239 |
+
)
|
240 |
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
241 |
+
if n_gru:
|
242 |
+
self.fc = nn.Sequential(
|
243 |
+
BiGRU(3 * 128, 256, n_gru),
|
244 |
+
nn.Linear(512, 360),
|
245 |
+
nn.Dropout(0.25),
|
246 |
+
nn.Sigmoid(),
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
self.fc = nn.Sequential(
|
250 |
+
nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
251 |
+
)
|
252 |
+
|
253 |
+
def forward(self, mel):
|
254 |
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
255 |
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
256 |
+
x = self.fc(x)
|
257 |
+
return x
|
258 |
+
|
259 |
+
|
260 |
+
from librosa.filters import mel
|
261 |
+
|
262 |
+
|
263 |
+
class MelSpectrogram(torch.nn.Module):
|
264 |
+
def __init__(
|
265 |
+
self,
|
266 |
+
is_half,
|
267 |
+
n_mel_channels,
|
268 |
+
sampling_rate,
|
269 |
+
win_length,
|
270 |
+
hop_length,
|
271 |
+
n_fft=None,
|
272 |
+
mel_fmin=0,
|
273 |
+
mel_fmax=None,
|
274 |
+
clamp=1e-5,
|
275 |
+
):
|
276 |
+
super().__init__()
|
277 |
+
n_fft = win_length if n_fft is None else n_fft
|
278 |
+
self.hann_window = {}
|
279 |
+
mel_basis = mel(
|
280 |
+
sr=sampling_rate,
|
281 |
+
n_fft=n_fft,
|
282 |
+
n_mels=n_mel_channels,
|
283 |
+
fmin=mel_fmin,
|
284 |
+
fmax=mel_fmax,
|
285 |
+
htk=True,
|
286 |
+
)
|
287 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
288 |
+
self.register_buffer("mel_basis", mel_basis)
|
289 |
+
self.n_fft = win_length if n_fft is None else n_fft
|
290 |
+
self.hop_length = hop_length
|
291 |
+
self.win_length = win_length
|
292 |
+
self.sampling_rate = sampling_rate
|
293 |
+
self.n_mel_channels = n_mel_channels
|
294 |
+
self.clamp = clamp
|
295 |
+
self.is_half = is_half
|
296 |
+
|
297 |
+
def forward(self, audio, keyshift=0, speed=1, center=True):
|
298 |
+
factor = 2 ** (keyshift / 12)
|
299 |
+
n_fft_new = int(np.round(self.n_fft * factor))
|
300 |
+
win_length_new = int(np.round(self.win_length * factor))
|
301 |
+
hop_length_new = int(np.round(self.hop_length * speed))
|
302 |
+
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
303 |
+
if keyshift_key not in self.hann_window:
|
304 |
+
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
305 |
+
audio.device
|
306 |
+
)
|
307 |
+
fft = torch.stft(
|
308 |
+
audio,
|
309 |
+
n_fft=n_fft_new,
|
310 |
+
hop_length=hop_length_new,
|
311 |
+
win_length=win_length_new,
|
312 |
+
window=self.hann_window[keyshift_key],
|
313 |
+
center=center,
|
314 |
+
return_complex=True,
|
315 |
+
)
|
316 |
+
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
317 |
+
if keyshift != 0:
|
318 |
+
size = self.n_fft // 2 + 1
|
319 |
+
resize = magnitude.size(1)
|
320 |
+
if resize < size:
|
321 |
+
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
322 |
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
323 |
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
324 |
+
if self.is_half == True:
|
325 |
+
mel_output = mel_output.half()
|
326 |
+
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
327 |
+
return log_mel_spec
|
328 |
+
|
329 |
+
|
330 |
+
class RMVPE:
|
331 |
+
def __init__(self, model_path, is_half, device=None):
|
332 |
+
self.resample_kernel = {}
|
333 |
+
model = E2E(4, 1, (2, 2))
|
334 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
335 |
+
model.load_state_dict(ckpt)
|
336 |
+
model.eval()
|
337 |
+
if is_half == True:
|
338 |
+
model = model.half()
|
339 |
+
self.model = model
|
340 |
+
self.resample_kernel = {}
|
341 |
+
self.is_half = is_half
|
342 |
+
if device is None:
|
343 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
344 |
+
self.device = device
|
345 |
+
self.mel_extractor = MelSpectrogram(
|
346 |
+
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
347 |
+
).to(device)
|
348 |
+
self.model = self.model.to(device)
|
349 |
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
350 |
+
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
351 |
+
|
352 |
+
def mel2hidden(self, mel):
|
353 |
+
with torch.no_grad():
|
354 |
+
n_frames = mel.shape[-1]
|
355 |
+
mel = F.pad(
|
356 |
+
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
357 |
+
)
|
358 |
+
hidden = self.model(mel)
|
359 |
+
return hidden[:, :n_frames]
|
360 |
+
|
361 |
+
def decode(self, hidden, thred=0.03):
|
362 |
+
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
363 |
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
364 |
+
f0[f0 == 10] = 0
|
365 |
+
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
366 |
+
return f0
|
367 |
+
|
368 |
+
def infer_from_audio(self, audio, thred=0.03):
|
369 |
+
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
|
370 |
+
# torch.cuda.synchronize()
|
371 |
+
# t0=ttime()
|
372 |
+
mel = self.mel_extractor(audio, center=True)
|
373 |
+
# torch.cuda.synchronize()
|
374 |
+
# t1=ttime()
|
375 |
+
hidden = self.mel2hidden(mel)
|
376 |
+
# torch.cuda.synchronize()
|
377 |
+
# t2=ttime()
|
378 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
379 |
+
if self.is_half == True:
|
380 |
+
hidden = hidden.astype("float32")
|
381 |
+
f0 = self.decode(hidden, thred=thred)
|
382 |
+
# torch.cuda.synchronize()
|
383 |
+
# t3=ttime()
|
384 |
+
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
385 |
+
return f0
|
386 |
+
|
387 |
+
def to_local_average_cents(self, salience, thred=0.05):
|
388 |
+
# t0 = ttime()
|
389 |
+
center = np.argmax(salience, axis=1) # 帧长#index
|
390 |
+
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
391 |
+
# t1 = ttime()
|
392 |
+
center += 4
|
393 |
+
todo_salience = []
|
394 |
+
todo_cents_mapping = []
|
395 |
+
starts = center - 4
|
396 |
+
ends = center + 5
|
397 |
+
for idx in range(salience.shape[0]):
|
398 |
+
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
399 |
+
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
400 |
+
# t2 = ttime()
|
401 |
+
todo_salience = np.array(todo_salience) # 帧长,9
|
402 |
+
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
403 |
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
404 |
+
weight_sum = np.sum(todo_salience, 1) # 帧长
|
405 |
+
devided = product_sum / weight_sum # 帧长
|
406 |
+
# t3 = ttime()
|
407 |
+
maxx = np.max(salience, axis=1) # 帧长
|
408 |
+
devided[maxx <= thred] = 0
|
409 |
+
# t4 = ttime()
|
410 |
+
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
411 |
+
return devided
|
412 |
+
|
413 |
+
|
414 |
+
# if __name__ == '__main__':
|
415 |
+
# audio, sampling_rate = sf.read("卢本伟语录~1.wav")
|
416 |
+
# if len(audio.shape) > 1:
|
417 |
+
# audio = librosa.to_mono(audio.transpose(1, 0))
|
418 |
+
# audio_bak = audio.copy()
|
419 |
+
# if sampling_rate != 16000:
|
420 |
+
# audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
421 |
+
# model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt"
|
422 |
+
# thred = 0.03 # 0.01
|
423 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
424 |
+
# rmvpe = RMVPE(model_path,is_half=False, device=device)
|
425 |
+
# t0=ttime()
|
426 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
427 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
428 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
429 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
430 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
431 |
+
# t1=ttime()
|
432 |
+
# print(f0.shape,t1-t0)
|
utils/__init__.py
ADDED
File without changes
|
utils/dependencies.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import shutil
|
4 |
+
import tarfile
|
5 |
+
import subprocess
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
|
9 |
+
def install_packages_but_jank_af():
|
10 |
+
packages = ['build-essential', 'python3-dev', 'ffmpeg', 'aria2']
|
11 |
+
pip_packages = ['pip', 'setuptools', 'wheel', 'httpx==0.23.0', 'faiss-gpu', 'fairseq', 'gradio==3.34.0',
|
12 |
+
'ffmpeg', 'ffmpeg-python', 'praat-parselmouth', 'pyworld', 'numpy==1.23.5',
|
13 |
+
'numba==0.56.4', 'librosa==0.9.2', 'mega.py', 'gdown', 'onnxruntime', 'pyngrok==4.1.12',
|
14 |
+
'gTTS', 'elevenlabs', 'wget', 'tensorboardX', 'unidecode', 'huggingface-hub',
|
15 |
+
'yt-dlp', 'pedalboard', 'pathvalidate', 'nltk', 'edge-tts', 'git+https://github.com/suno-ai/bark.git', 'python-dotenv', 'av']
|
16 |
+
|
17 |
+
print("Updating and installing system packages...")
|
18 |
+
for package in packages:
|
19 |
+
print(f"Installing {package}...")
|
20 |
+
subprocess.check_call(['apt-get', 'install', '-qq', '-y', package])
|
21 |
+
|
22 |
+
print("Updating and installing pip packages...")
|
23 |
+
subprocess.check_call(['pip', 'install', '--upgrade'] + pip_packages)
|
24 |
+
|
25 |
+
print('Packages up to date.')
|
26 |
+
|
27 |
+
|
28 |
+
def setup_environment(ForceUpdateDependencies, ForceTemporaryStorage):
|
29 |
+
# Mounting Google Drive
|
30 |
+
if not ForceTemporaryStorage:
|
31 |
+
from google.colab import drive
|
32 |
+
|
33 |
+
if not os.path.exists('/content/drive'):
|
34 |
+
drive.mount('/content/drive')
|
35 |
+
else:
|
36 |
+
print('Drive is already mounted. Proceeding...')
|
37 |
+
|
38 |
+
# Function to install dependencies with progress
|
39 |
+
def install_packages():
|
40 |
+
packages = ['build-essential', 'python3-dev', 'ffmpeg', 'aria2']
|
41 |
+
pip_packages = ['pip', 'setuptools', 'wheel', 'httpx==0.23.0', 'faiss-gpu', 'fairseq', 'gradio==3.34.0',
|
42 |
+
'ffmpeg', 'ffmpeg-python', 'praat-parselmouth', 'pyworld', 'numpy==1.23.5',
|
43 |
+
'numba==0.56.4', 'librosa==0.9.2', 'mega.py', 'gdown', 'onnxruntime', 'pyngrok==4.1.12',
|
44 |
+
'gTTS', 'elevenlabs', 'wget', 'tensorboardX', 'unidecode', 'huggingface-hub',
|
45 |
+
'yt-dlp', 'pedalboard', 'pathvalidate', 'nltk', 'edge-tts', 'git+https://github.com/suno-ai/bark.git', 'python-dotenv', 'av']
|
46 |
+
|
47 |
+
print("Updating and installing system packages...")
|
48 |
+
for package in packages:
|
49 |
+
print(f"Installing {package}...")
|
50 |
+
subprocess.check_call(['apt-get', 'install', '-qq', '-y', package])
|
51 |
+
|
52 |
+
print("Updating and installing pip packages...")
|
53 |
+
subprocess.check_call(['pip', 'install', '--upgrade'] + pip_packages)
|
54 |
+
|
55 |
+
print('Packages up to date.')
|
56 |
+
|
57 |
+
# Function to scan a directory and writes filenames and timestamps
|
58 |
+
def scan_and_write(base_path, output_file):
|
59 |
+
with open(output_file, 'w', newline='') as f:
|
60 |
+
writer = csv.writer(f)
|
61 |
+
for dirpath, dirs, files in os.walk(base_path):
|
62 |
+
for filename in files:
|
63 |
+
fname = os.path.join(dirpath, filename)
|
64 |
+
try:
|
65 |
+
mtime = os.path.getmtime(fname)
|
66 |
+
writer.writerow([fname, mtime])
|
67 |
+
except Exception as e:
|
68 |
+
print(
|
69 |
+
f'Skipping irrelevant nonexistent file {fname}: {str(e)}')
|
70 |
+
print(f'Finished recording filesystem timestamps to {output_file}.')
|
71 |
+
|
72 |
+
# Function to compare files
|
73 |
+
def compare_files(old_file, new_file):
|
74 |
+
old_files = {}
|
75 |
+
new_files = {}
|
76 |
+
|
77 |
+
with open(old_file, 'r') as f:
|
78 |
+
reader = csv.reader(f)
|
79 |
+
old_files = {rows[0]: rows[1] for rows in reader}
|
80 |
+
|
81 |
+
with open(new_file, 'r') as f:
|
82 |
+
reader = csv.reader(f)
|
83 |
+
new_files = {rows[0]: rows[1] for rows in reader}
|
84 |
+
|
85 |
+
removed_files = old_files.keys() - new_files.keys()
|
86 |
+
added_files = new_files.keys() - old_files.keys()
|
87 |
+
unchanged_files = old_files.keys() & new_files.keys()
|
88 |
+
|
89 |
+
changed_files = {
|
90 |
+
f for f in unchanged_files if old_files[f] != new_files[f]}
|
91 |
+
|
92 |
+
for file in removed_files:
|
93 |
+
print(f'File has been removed: {file}')
|
94 |
+
|
95 |
+
for file in changed_files:
|
96 |
+
print(f'File has been updated: {file}')
|
97 |
+
|
98 |
+
return list(added_files) + list(changed_files)
|
99 |
+
|
100 |
+
# Check if CachedRVC.tar.gz exists
|
101 |
+
if ForceTemporaryStorage:
|
102 |
+
file_path = '/content/CachedRVC.tar.gz'
|
103 |
+
else:
|
104 |
+
file_path = '/content/drive/MyDrive/RVC_Cached/CachedRVC.tar.gz'
|
105 |
+
|
106 |
+
content_file_path = '/content/CachedRVC.tar.gz'
|
107 |
+
extract_path = '/'
|
108 |
+
|
109 |
+
if not os.path.exists(file_path):
|
110 |
+
folder_path = os.path.dirname(file_path)
|
111 |
+
os.makedirs(folder_path, exist_ok=True)
|
112 |
+
print('No cached dependency install found. Attempting to download GitHub backup..')
|
113 |
+
|
114 |
+
try:
|
115 |
+
download_url = "https://github.com/kalomaze/QuickMangioFixes/releases/download/release3/CachedRVC.tar.gz"
|
116 |
+
subprocess.run(["wget", "-O", file_path, download_url])
|
117 |
+
print('Download completed successfully!')
|
118 |
+
except Exception as e:
|
119 |
+
print('Download failed:', str(e))
|
120 |
+
|
121 |
+
# Delete the failed download file
|
122 |
+
if os.path.exists(file_path):
|
123 |
+
os.remove(file_path)
|
124 |
+
print('Failed download file deleted. Continuing manual backup..')
|
125 |
+
|
126 |
+
if Path(file_path).exists():
|
127 |
+
if ForceTemporaryStorage:
|
128 |
+
print('Finished downloading CachedRVC.tar.gz.')
|
129 |
+
else:
|
130 |
+
print(
|
131 |
+
'CachedRVC.tar.gz found on Google Drive. Proceeding to copy and extract...')
|
132 |
+
|
133 |
+
# Check if ForceTemporaryStorage is True and skip copying if it is
|
134 |
+
if ForceTemporaryStorage:
|
135 |
+
pass
|
136 |
+
else:
|
137 |
+
shutil.copy(file_path, content_file_path)
|
138 |
+
|
139 |
+
print('Beginning backup copy operation...')
|
140 |
+
|
141 |
+
with tarfile.open(content_file_path, 'r:gz') as tar:
|
142 |
+
for member in tar.getmembers():
|
143 |
+
target_path = os.path.join(extract_path, member.name)
|
144 |
+
try:
|
145 |
+
tar.extract(member, extract_path)
|
146 |
+
except Exception as e:
|
147 |
+
print(
|
148 |
+
'Failed to extract a file (this isn\'t normal)... forcing an update to compensate')
|
149 |
+
ForceUpdateDependencies = True
|
150 |
+
print(
|
151 |
+
f'Extraction of {content_file_path} to {extract_path} completed.')
|
152 |
+
|
153 |
+
if ForceUpdateDependencies:
|
154 |
+
install_packages()
|
155 |
+
ForceUpdateDependencies = False
|
156 |
+
else:
|
157 |
+
print('CachedRVC.tar.gz not found. Proceeding to create an index of all current files...')
|
158 |
+
scan_and_write('/usr/', '/content/usr_files.csv')
|
159 |
+
|
160 |
+
install_packages()
|
161 |
+
|
162 |
+
scan_and_write('/usr/', '/content/usr_files_new.csv')
|
163 |
+
changed_files = compare_files(
|
164 |
+
'/content/usr_files.csv', '/content/usr_files_new.csv')
|
165 |
+
|
166 |
+
with tarfile.open('/content/CachedRVC.tar.gz', 'w:gz') as new_tar:
|
167 |
+
for file in changed_files:
|
168 |
+
new_tar.add(file)
|
169 |
+
print(f'Added to tar: {file}')
|
170 |
+
|
171 |
+
os.makedirs('/content/drive/MyDrive/RVC_Cached', exist_ok=True)
|
172 |
+
shutil.copy('/content/CachedRVC.tar.gz',
|
173 |
+
'/content/drive/MyDrive/RVC_Cached/CachedRVC.tar.gz')
|
174 |
+
print('Updated CachedRVC.tar.gz copied to Google Drive.')
|
175 |
+
print('Dependencies fully up to date; future runs should be faster.')
|
utils/model.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
from mega import Mega
|
4 |
+
import gdown
|
5 |
+
import re
|
6 |
+
import wget
|
7 |
+
import sys
|
8 |
+
import uuid
|
9 |
+
import zipfile
|
10 |
+
|
11 |
+
|
12 |
+
class InvalidDriveId(Exception):
|
13 |
+
def __init__(self, message="Error de la url"):
|
14 |
+
self.message = message
|
15 |
+
super().__init__(self.message)
|
16 |
+
|
17 |
+
|
18 |
+
def model_downloader(url, zip_path, dest_path):
|
19 |
+
"""Download and unzip a file from Google Drive or Mega."""
|
20 |
+
|
21 |
+
def drive_download(url, dest_folder):
|
22 |
+
print(f"Descargando desde drive...")
|
23 |
+
try:
|
24 |
+
filename = gdown.download(url, os.path.join(dest_folder, f"{uuid.uuid4()}.zip"), fuzzy=True)
|
25 |
+
return filename
|
26 |
+
except:
|
27 |
+
print("El intento de descargar con drive no funcionó")
|
28 |
+
return None
|
29 |
+
|
30 |
+
def mega_download(url, dest_folder):
|
31 |
+
try:
|
32 |
+
file_id = None
|
33 |
+
if "#!" in url:
|
34 |
+
file_id = url.split("#!")[1].split("!")[0]
|
35 |
+
elif "file/" in url:
|
36 |
+
file_id = url.split("file/")[1].split("/")[0]
|
37 |
+
else:
|
38 |
+
file_id = None
|
39 |
+
|
40 |
+
print(f"Descargando desde mega...")
|
41 |
+
if file_id:
|
42 |
+
mega = Mega()
|
43 |
+
m = mega.login()
|
44 |
+
filename = m.download_url(url, dest_path=dest_folder, dest_filename=f"{uuid.uuid4()}.zip")
|
45 |
+
|
46 |
+
return os.path.basename(filename)
|
47 |
+
else:
|
48 |
+
return None
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
print("Ocurrio un error**")
|
52 |
+
print(e)
|
53 |
+
return None
|
54 |
+
|
55 |
+
def download(url, dest_folder):
|
56 |
+
try:
|
57 |
+
print(f"Descargando desde url generica...")
|
58 |
+
dest_path = wget.download(url=url, out=os.path.join(dest_folder, f"{uuid.uuid4()}.zip"))
|
59 |
+
|
60 |
+
return os.path.basename(dest_path)
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error al descargar el archivo: {str(e)}")
|
63 |
+
|
64 |
+
filename = ""
|
65 |
+
|
66 |
+
if not os.path.exists(zip_path):
|
67 |
+
os.mkdir(zip_path)
|
68 |
+
|
69 |
+
if url and 'drive.google.com' in url:
|
70 |
+
# Descargar el elemento si la URL es de Google Drive
|
71 |
+
filename = drive_download(url, zip_path)
|
72 |
+
elif url and 'mega.nz' in url:
|
73 |
+
filename = mega_download(url, zip_path)
|
74 |
+
elif url and 'pixeldrain' in url:
|
75 |
+
print("No se puede descargar de pixeldrain")
|
76 |
+
sys.exit()
|
77 |
+
else:
|
78 |
+
filename = download(url, zip_path)
|
79 |
+
|
80 |
+
if filename:
|
81 |
+
print(f"Descomprimiendo {filename}...")
|
82 |
+
modelname = str(filename).replace(".zip", "")
|
83 |
+
zip_file_path = os.path.join(zip_path, filename)
|
84 |
+
|
85 |
+
try:
|
86 |
+
shutil.unpack_archive(zip_file_path, os.path.join(dest_path, modelname))
|
87 |
+
except Exception as e:
|
88 |
+
try:
|
89 |
+
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
90 |
+
zip_ref.extractall(dest_path)
|
91 |
+
except zipfile.BadZipFile as e:
|
92 |
+
print(f"Error: El archivo ZIP no es válido - {e}")
|
93 |
+
except Exception as e:
|
94 |
+
print(f"Error inesperado: {e}")
|
95 |
+
|
96 |
+
if os.path.exists(zip_file_path):
|
97 |
+
os.remove(zip_file_path)
|
98 |
+
|
99 |
+
return modelname
|
100 |
+
else:
|
101 |
+
return None
|
102 |
+
|
103 |
+
|
104 |
+
def get_models(weight_path):
|
105 |
+
# Obtener todos los elementos en la ruta
|
106 |
+
files = os.listdir(weight_path)
|
107 |
+
# Filtrar solo los directorios
|
108 |
+
return [file for file in files if os.path.isdir(os.path.join(weight_path, file))]
|
109 |
+
|
110 |
+
|
111 |
+
def get_model(weight_path, modelname):
|
112 |
+
resources = {}
|
113 |
+
for root, dirs, files in os.walk(os.path.join(weight_path, modelname)):
|
114 |
+
for file in files:
|
115 |
+
if file.endswith('.index'):
|
116 |
+
resources['index'] = os.path.relpath(os.path.join(root, file))
|
117 |
+
if file.endswith('.pth'):
|
118 |
+
resources['pth'] = os.path.relpath(os.path.join(root, file), start=weight_path)
|
119 |
+
return resources
|
120 |
+
|
121 |
+
|
122 |
+
def get_audios(audios_path):
|
123 |
+
# Obtener todos los elementos en la ruta
|
124 |
+
files = os.listdir(audios_path)
|
125 |
+
# Filtrar solo los directorios
|
126 |
+
return [file for file in files if not os.path.isdir(os.path.join(audios_path, file)) and os.path.join(audios_path, file).endswith(('.mp3', '.wav'))]
|
vc_infer_pipeline.py
ADDED
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np, parselmouth, torch, pdb, sys, os
|
2 |
+
from time import time as ttime
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchcrepe # Fork feature. Use the crepe f0 algorithm. New dependency (pip install torchcrepe)
|
5 |
+
from torch import Tensor
|
6 |
+
import scipy.signal as signal
|
7 |
+
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
8 |
+
from scipy import signal
|
9 |
+
from functools import lru_cache
|
10 |
+
|
11 |
+
now_dir = os.getcwd()
|
12 |
+
sys.path.append(now_dir)
|
13 |
+
|
14 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
15 |
+
|
16 |
+
input_audio_path2wav = {}
|
17 |
+
|
18 |
+
|
19 |
+
@lru_cache
|
20 |
+
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
21 |
+
audio = input_audio_path2wav[input_audio_path]
|
22 |
+
f0, t = pyworld.harvest(
|
23 |
+
audio,
|
24 |
+
fs=fs,
|
25 |
+
f0_ceil=f0max,
|
26 |
+
f0_floor=f0min,
|
27 |
+
frame_period=frame_period,
|
28 |
+
)
|
29 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
30 |
+
return f0
|
31 |
+
|
32 |
+
|
33 |
+
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
34 |
+
# print(data1.max(),data2.max())
|
35 |
+
rms1 = librosa.feature.rms(
|
36 |
+
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
37 |
+
) # 每半秒一个点
|
38 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
39 |
+
rms1 = torch.from_numpy(rms1)
|
40 |
+
rms1 = F.interpolate(
|
41 |
+
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
42 |
+
).squeeze()
|
43 |
+
rms2 = torch.from_numpy(rms2)
|
44 |
+
rms2 = F.interpolate(
|
45 |
+
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
46 |
+
).squeeze()
|
47 |
+
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
48 |
+
data2 *= (
|
49 |
+
torch.pow(rms1, torch.tensor(1 - rate))
|
50 |
+
* torch.pow(rms2, torch.tensor(rate - 1))
|
51 |
+
).numpy()
|
52 |
+
return data2
|
53 |
+
|
54 |
+
|
55 |
+
class VC(object):
|
56 |
+
def __init__(self, tgt_sr, config):
|
57 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
58 |
+
config.x_pad,
|
59 |
+
config.x_query,
|
60 |
+
config.x_center,
|
61 |
+
config.x_max,
|
62 |
+
config.is_half,
|
63 |
+
)
|
64 |
+
self.sr = 16000 # hubert输入采样率
|
65 |
+
self.window = 160 # 每帧点数
|
66 |
+
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
67 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
68 |
+
self.t_pad2 = self.t_pad * 2
|
69 |
+
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
70 |
+
self.t_center = self.sr * self.x_center # 查询切点位置
|
71 |
+
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
72 |
+
self.device = config.device
|
73 |
+
|
74 |
+
# Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
|
75 |
+
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
76 |
+
# Get cuda device
|
77 |
+
if torch.cuda.is_available():
|
78 |
+
return torch.device(
|
79 |
+
f"cuda:{index % torch.cuda.device_count()}"
|
80 |
+
) # Very fast
|
81 |
+
elif torch.backends.mps.is_available():
|
82 |
+
return torch.device("mps")
|
83 |
+
# Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
|
84 |
+
# Else wise return the "cpu" as a torch device,
|
85 |
+
return torch.device("cpu")
|
86 |
+
|
87 |
+
# Fork Feature: Compute f0 with the crepe method
|
88 |
+
def get_f0_crepe_computation(
|
89 |
+
self,
|
90 |
+
x,
|
91 |
+
f0_min,
|
92 |
+
f0_max,
|
93 |
+
p_len,
|
94 |
+
hop_length=160, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
|
95 |
+
model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
|
96 |
+
):
|
97 |
+
x = x.astype(
|
98 |
+
np.float32
|
99 |
+
) # fixes the F.conv2D exception. We needed to convert double to float.
|
100 |
+
x /= np.quantile(np.abs(x), 0.999)
|
101 |
+
torch_device = self.get_optimal_torch_device()
|
102 |
+
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
103 |
+
audio = torch.unsqueeze(audio, dim=0)
|
104 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
105 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
106 |
+
audio = audio.detach()
|
107 |
+
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
108 |
+
pitch: Tensor = torchcrepe.predict(
|
109 |
+
audio,
|
110 |
+
self.sr,
|
111 |
+
hop_length,
|
112 |
+
f0_min,
|
113 |
+
f0_max,
|
114 |
+
model,
|
115 |
+
batch_size=hop_length * 2,
|
116 |
+
device=torch_device,
|
117 |
+
pad=True,
|
118 |
+
)
|
119 |
+
p_len = p_len or x.shape[0] // hop_length
|
120 |
+
# Resize the pitch for final f0
|
121 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
122 |
+
source[source < 0.001] = np.nan
|
123 |
+
target = np.interp(
|
124 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
125 |
+
np.arange(0, len(source)),
|
126 |
+
source,
|
127 |
+
)
|
128 |
+
f0 = np.nan_to_num(target)
|
129 |
+
return f0 # Resized f0
|
130 |
+
|
131 |
+
def get_f0_official_crepe_computation(
|
132 |
+
self,
|
133 |
+
x,
|
134 |
+
f0_min,
|
135 |
+
f0_max,
|
136 |
+
model="full",
|
137 |
+
):
|
138 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
139 |
+
batch_size = 512
|
140 |
+
# Compute pitch using first gpu
|
141 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
142 |
+
f0, pd = torchcrepe.predict(
|
143 |
+
audio,
|
144 |
+
self.sr,
|
145 |
+
self.window,
|
146 |
+
f0_min,
|
147 |
+
f0_max,
|
148 |
+
model,
|
149 |
+
batch_size=batch_size,
|
150 |
+
device=self.device,
|
151 |
+
return_periodicity=True,
|
152 |
+
)
|
153 |
+
pd = torchcrepe.filter.median(pd, 3)
|
154 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
155 |
+
f0[pd < 0.1] = 0
|
156 |
+
f0 = f0[0].cpu().numpy()
|
157 |
+
return f0
|
158 |
+
|
159 |
+
# Fork Feature: Compute pYIN f0 method
|
160 |
+
def get_f0_pyin_computation(self, x, f0_min, f0_max):
|
161 |
+
y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
|
162 |
+
f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
|
163 |
+
f0 = f0[1:] # Get rid of extra first frame
|
164 |
+
return f0
|
165 |
+
|
166 |
+
# Fork Feature: Acquire median hybrid f0 estimation calculation
|
167 |
+
def get_f0_hybrid_computation(
|
168 |
+
self,
|
169 |
+
methods_str,
|
170 |
+
input_audio_path,
|
171 |
+
x,
|
172 |
+
f0_min,
|
173 |
+
f0_max,
|
174 |
+
p_len,
|
175 |
+
filter_radius,
|
176 |
+
crepe_hop_length,
|
177 |
+
time_step,
|
178 |
+
):
|
179 |
+
# Get various f0 methods from input to use in the computation stack
|
180 |
+
s = methods_str
|
181 |
+
s = s.split("hybrid")[1]
|
182 |
+
s = s.replace("[", "").replace("]", "")
|
183 |
+
methods = s.split("+")
|
184 |
+
f0_computation_stack = []
|
185 |
+
|
186 |
+
print("Calculating f0 pitch estimations for methods: %s" % str(methods))
|
187 |
+
x = x.astype(np.float32)
|
188 |
+
x /= np.quantile(np.abs(x), 0.999)
|
189 |
+
# Get f0 calculations for all methods specified
|
190 |
+
for method in methods:
|
191 |
+
f0 = None
|
192 |
+
if method == "pm":
|
193 |
+
f0 = (
|
194 |
+
parselmouth.Sound(x, self.sr)
|
195 |
+
.to_pitch_ac(
|
196 |
+
time_step=time_step / 1000,
|
197 |
+
voicing_threshold=0.6,
|
198 |
+
pitch_floor=f0_min,
|
199 |
+
pitch_ceiling=f0_max,
|
200 |
+
)
|
201 |
+
.selected_array["frequency"]
|
202 |
+
)
|
203 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
204 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
205 |
+
f0 = np.pad(
|
206 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
207 |
+
)
|
208 |
+
elif method == "crepe":
|
209 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
|
210 |
+
f0 = f0[1:] # Get rid of extra first frame
|
211 |
+
elif method == "crepe-tiny":
|
212 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
|
213 |
+
f0 = f0[1:] # Get rid of extra first frame
|
214 |
+
elif method == "mangio-crepe":
|
215 |
+
f0 = self.get_f0_crepe_computation(
|
216 |
+
x, f0_min, f0_max, p_len, crepe_hop_length
|
217 |
+
)
|
218 |
+
elif method == "mangio-crepe-tiny":
|
219 |
+
f0 = self.get_f0_crepe_computation(
|
220 |
+
x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
|
221 |
+
)
|
222 |
+
elif method == "harvest":
|
223 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
224 |
+
if filter_radius > 2:
|
225 |
+
f0 = signal.medfilt(f0, 3)
|
226 |
+
f0 = f0[1:] # Get rid of first frame.
|
227 |
+
elif method == "rmvpe":
|
228 |
+
if hasattr(self, "model_rmvpe") == False:
|
229 |
+
from rmvpe import RMVPE
|
230 |
+
|
231 |
+
print("loading rmvpe model")
|
232 |
+
self.model_rmvpe = RMVPE(
|
233 |
+
"rmvpe.pt", is_half=self.is_half, device=self.device
|
234 |
+
)
|
235 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
236 |
+
f0 = f0[1:] # Get rid of first frame.
|
237 |
+
elif method == "dio": # Potentially buggy?
|
238 |
+
f0, t = pyworld.dio(
|
239 |
+
x.astype(np.double),
|
240 |
+
fs=self.sr,
|
241 |
+
f0_ceil=f0_max,
|
242 |
+
f0_floor=f0_min,
|
243 |
+
frame_period=10,
|
244 |
+
)
|
245 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
246 |
+
f0 = signal.medfilt(f0, 3)
|
247 |
+
f0 = f0[1:]
|
248 |
+
# elif method == "pyin": Not Working just yet
|
249 |
+
# f0 = self.get_f0_pyin_computation(x, f0_min, f0_max)
|
250 |
+
# Push method to the stack
|
251 |
+
f0_computation_stack.append(f0)
|
252 |
+
|
253 |
+
for fc in f0_computation_stack:
|
254 |
+
print(len(fc))
|
255 |
+
|
256 |
+
print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
|
257 |
+
f0_median_hybrid = None
|
258 |
+
if len(f0_computation_stack) == 1:
|
259 |
+
f0_median_hybrid = f0_computation_stack[0]
|
260 |
+
else:
|
261 |
+
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
|
262 |
+
return f0_median_hybrid
|
263 |
+
|
264 |
+
def get_f0(
|
265 |
+
self,
|
266 |
+
input_audio_path,
|
267 |
+
x,
|
268 |
+
p_len,
|
269 |
+
f0_up_key,
|
270 |
+
f0_method,
|
271 |
+
filter_radius,
|
272 |
+
crepe_hop_length,
|
273 |
+
inp_f0=None,
|
274 |
+
):
|
275 |
+
global input_audio_path2wav
|
276 |
+
time_step = self.window / self.sr * 1000
|
277 |
+
f0_min = 50
|
278 |
+
f0_max = 1100
|
279 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
280 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
281 |
+
if f0_method == "pm":
|
282 |
+
f0 = (
|
283 |
+
parselmouth.Sound(x, self.sr)
|
284 |
+
.to_pitch_ac(
|
285 |
+
time_step=time_step / 1000,
|
286 |
+
voicing_threshold=0.6,
|
287 |
+
pitch_floor=f0_min,
|
288 |
+
pitch_ceiling=f0_max,
|
289 |
+
)
|
290 |
+
.selected_array["frequency"]
|
291 |
+
)
|
292 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
293 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
294 |
+
f0 = np.pad(
|
295 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
296 |
+
)
|
297 |
+
elif f0_method == "harvest":
|
298 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
299 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
300 |
+
if filter_radius > 2:
|
301 |
+
f0 = signal.medfilt(f0, 3)
|
302 |
+
elif f0_method == "dio": # Potentially Buggy?
|
303 |
+
f0, t = pyworld.dio(
|
304 |
+
x.astype(np.double),
|
305 |
+
fs=self.sr,
|
306 |
+
f0_ceil=f0_max,
|
307 |
+
f0_floor=f0_min,
|
308 |
+
frame_period=10,
|
309 |
+
)
|
310 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
311 |
+
f0 = signal.medfilt(f0, 3)
|
312 |
+
elif f0_method == "crepe":
|
313 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
|
314 |
+
elif f0_method == "crepe-tiny":
|
315 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
|
316 |
+
elif f0_method == "mangio-crepe":
|
317 |
+
f0 = self.get_f0_crepe_computation(
|
318 |
+
x, f0_min, f0_max, p_len, crepe_hop_length
|
319 |
+
)
|
320 |
+
elif f0_method == "mangio-crepe-tiny":
|
321 |
+
f0 = self.get_f0_crepe_computation(
|
322 |
+
x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
|
323 |
+
)
|
324 |
+
elif f0_method == "rmvpe":
|
325 |
+
if hasattr(self, "model_rmvpe") == False:
|
326 |
+
from rmvpe import RMVPE
|
327 |
+
|
328 |
+
print("loading rmvpe model")
|
329 |
+
self.model_rmvpe = RMVPE(
|
330 |
+
"rmvpe.pt", is_half=self.is_half, device=self.device
|
331 |
+
)
|
332 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
333 |
+
|
334 |
+
elif "hybrid" in f0_method:
|
335 |
+
# Perform hybrid median pitch estimation
|
336 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
337 |
+
f0 = self.get_f0_hybrid_computation(
|
338 |
+
f0_method,
|
339 |
+
input_audio_path,
|
340 |
+
x,
|
341 |
+
f0_min,
|
342 |
+
f0_max,
|
343 |
+
p_len,
|
344 |
+
filter_radius,
|
345 |
+
crepe_hop_length,
|
346 |
+
time_step,
|
347 |
+
)
|
348 |
+
|
349 |
+
f0 *= pow(2, f0_up_key / 12)
|
350 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
351 |
+
tf0 = self.sr // self.window # 每秒f0点数
|
352 |
+
if inp_f0 is not None:
|
353 |
+
delta_t = np.round(
|
354 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
355 |
+
).astype("int16")
|
356 |
+
replace_f0 = np.interp(
|
357 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
358 |
+
)
|
359 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
360 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
361 |
+
:shape
|
362 |
+
]
|
363 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
364 |
+
f0bak = f0.copy()
|
365 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
366 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
367 |
+
f0_mel_max - f0_mel_min
|
368 |
+
) + 1
|
369 |
+
f0_mel[f0_mel <= 1] = 1
|
370 |
+
f0_mel[f0_mel > 255] = 255
|
371 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
372 |
+
|
373 |
+
return f0_coarse, f0bak # 1-0
|
374 |
+
|
375 |
+
def vc(
|
376 |
+
self,
|
377 |
+
model,
|
378 |
+
net_g,
|
379 |
+
sid,
|
380 |
+
audio0,
|
381 |
+
pitch,
|
382 |
+
pitchf,
|
383 |
+
times,
|
384 |
+
index,
|
385 |
+
big_npy,
|
386 |
+
index_rate,
|
387 |
+
version,
|
388 |
+
protect,
|
389 |
+
): # ,file_index,file_big_npy
|
390 |
+
feats = torch.from_numpy(audio0)
|
391 |
+
if self.is_half:
|
392 |
+
feats = feats.half()
|
393 |
+
else:
|
394 |
+
feats = feats.float()
|
395 |
+
if feats.dim() == 2: # double channels
|
396 |
+
feats = feats.mean(-1)
|
397 |
+
assert feats.dim() == 1, feats.dim()
|
398 |
+
feats = feats.view(1, -1)
|
399 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
400 |
+
|
401 |
+
inputs = {
|
402 |
+
"source": feats.to(self.device),
|
403 |
+
"padding_mask": padding_mask,
|
404 |
+
"output_layer": 9 if version == "v1" else 12,
|
405 |
+
}
|
406 |
+
t0 = ttime()
|
407 |
+
with torch.no_grad():
|
408 |
+
logits = model.extract_features(**inputs)
|
409 |
+
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
410 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
411 |
+
feats0 = feats.clone()
|
412 |
+
if (
|
413 |
+
isinstance(index, type(None)) == False
|
414 |
+
and isinstance(big_npy, type(None)) == False
|
415 |
+
and index_rate != 0
|
416 |
+
):
|
417 |
+
npy = feats[0].cpu().numpy()
|
418 |
+
if self.is_half:
|
419 |
+
npy = npy.astype("float32")
|
420 |
+
|
421 |
+
# _, I = index.search(npy, 1)
|
422 |
+
# npy = big_npy[I.squeeze()]
|
423 |
+
|
424 |
+
score, ix = index.search(npy, k=8)
|
425 |
+
weight = np.square(1 / score)
|
426 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
427 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
428 |
+
|
429 |
+
if self.is_half:
|
430 |
+
npy = npy.astype("float16")
|
431 |
+
feats = (
|
432 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
433 |
+
+ (1 - index_rate) * feats
|
434 |
+
)
|
435 |
+
|
436 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
437 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
438 |
+
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
439 |
+
0, 2, 1
|
440 |
+
)
|
441 |
+
t1 = ttime()
|
442 |
+
p_len = audio0.shape[0] // self.window
|
443 |
+
if feats.shape[1] < p_len:
|
444 |
+
p_len = feats.shape[1]
|
445 |
+
if pitch != None and pitchf != None:
|
446 |
+
pitch = pitch[:, :p_len]
|
447 |
+
pitchf = pitchf[:, :p_len]
|
448 |
+
|
449 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
450 |
+
pitchff = pitchf.clone()
|
451 |
+
pitchff[pitchf > 0] = 1
|
452 |
+
pitchff[pitchf < 1] = protect
|
453 |
+
pitchff = pitchff.unsqueeze(-1)
|
454 |
+
feats = feats * pitchff + feats0 * (1 - pitchff)
|
455 |
+
feats = feats.to(feats0.dtype)
|
456 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
457 |
+
with torch.no_grad():
|
458 |
+
if pitch != None and pitchf != None:
|
459 |
+
audio1 = (
|
460 |
+
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
|
461 |
+
.data.cpu()
|
462 |
+
.float()
|
463 |
+
.numpy()
|
464 |
+
)
|
465 |
+
else:
|
466 |
+
audio1 = (
|
467 |
+
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
|
468 |
+
)
|
469 |
+
del feats, p_len, padding_mask
|
470 |
+
if torch.cuda.is_available():
|
471 |
+
torch.cuda.empty_cache()
|
472 |
+
t2 = ttime()
|
473 |
+
times[0] += t1 - t0
|
474 |
+
times[2] += t2 - t1
|
475 |
+
return audio1
|
476 |
+
|
477 |
+
def pipeline(
|
478 |
+
self,
|
479 |
+
model,
|
480 |
+
net_g,
|
481 |
+
sid,
|
482 |
+
audio,
|
483 |
+
input_audio_path,
|
484 |
+
times,
|
485 |
+
f0_up_key,
|
486 |
+
f0_method,
|
487 |
+
file_index,
|
488 |
+
# file_big_npy,
|
489 |
+
index_rate,
|
490 |
+
if_f0,
|
491 |
+
filter_radius,
|
492 |
+
tgt_sr,
|
493 |
+
resample_sr,
|
494 |
+
rms_mix_rate,
|
495 |
+
version,
|
496 |
+
protect,
|
497 |
+
crepe_hop_length,
|
498 |
+
f0_file=None,
|
499 |
+
):
|
500 |
+
if (
|
501 |
+
file_index != ""
|
502 |
+
# and file_big_npy != ""
|
503 |
+
# and os.path.exists(file_big_npy) == True
|
504 |
+
and os.path.exists(file_index) == True
|
505 |
+
and index_rate != 0
|
506 |
+
):
|
507 |
+
try:
|
508 |
+
index = faiss.read_index(file_index)
|
509 |
+
# big_npy = np.load(file_big_npy)
|
510 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
511 |
+
except:
|
512 |
+
traceback.print_exc()
|
513 |
+
index = big_npy = None
|
514 |
+
else:
|
515 |
+
index = big_npy = None
|
516 |
+
audio = signal.filtfilt(bh, ah, audio)
|
517 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
518 |
+
opt_ts = []
|
519 |
+
if audio_pad.shape[0] > self.t_max:
|
520 |
+
audio_sum = np.zeros_like(audio)
|
521 |
+
for i in range(self.window):
|
522 |
+
audio_sum += audio_pad[i : i - self.window]
|
523 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
524 |
+
opt_ts.append(
|
525 |
+
t
|
526 |
+
- self.t_query
|
527 |
+
+ np.where(
|
528 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
529 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
530 |
+
)[0][0]
|
531 |
+
)
|
532 |
+
s = 0
|
533 |
+
audio_opt = []
|
534 |
+
t = None
|
535 |
+
t1 = ttime()
|
536 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
537 |
+
p_len = audio_pad.shape[0] // self.window
|
538 |
+
inp_f0 = None
|
539 |
+
if hasattr(f0_file, "name") == True:
|
540 |
+
try:
|
541 |
+
with open(f0_file.name, "r") as f:
|
542 |
+
lines = f.read().strip("\n").split("\n")
|
543 |
+
inp_f0 = []
|
544 |
+
for line in lines:
|
545 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
546 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
547 |
+
except:
|
548 |
+
traceback.print_exc()
|
549 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
550 |
+
pitch, pitchf = None, None
|
551 |
+
if if_f0 == 1:
|
552 |
+
pitch, pitchf = self.get_f0(
|
553 |
+
input_audio_path,
|
554 |
+
audio_pad,
|
555 |
+
p_len,
|
556 |
+
f0_up_key,
|
557 |
+
f0_method,
|
558 |
+
filter_radius,
|
559 |
+
crepe_hop_length,
|
560 |
+
inp_f0,
|
561 |
+
)
|
562 |
+
pitch = pitch[:p_len]
|
563 |
+
pitchf = pitchf[:p_len]
|
564 |
+
if self.device == "mps":
|
565 |
+
pitchf = pitchf.astype(np.float32)
|
566 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
567 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
568 |
+
t2 = ttime()
|
569 |
+
times[1] += t2 - t1
|
570 |
+
for t in opt_ts:
|
571 |
+
t = t // self.window * self.window
|
572 |
+
if if_f0 == 1:
|
573 |
+
audio_opt.append(
|
574 |
+
self.vc(
|
575 |
+
model,
|
576 |
+
net_g,
|
577 |
+
sid,
|
578 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
579 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
580 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
581 |
+
times,
|
582 |
+
index,
|
583 |
+
big_npy,
|
584 |
+
index_rate,
|
585 |
+
version,
|
586 |
+
protect,
|
587 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
588 |
+
)
|
589 |
+
else:
|
590 |
+
audio_opt.append(
|
591 |
+
self.vc(
|
592 |
+
model,
|
593 |
+
net_g,
|
594 |
+
sid,
|
595 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
596 |
+
None,
|
597 |
+
None,
|
598 |
+
times,
|
599 |
+
index,
|
600 |
+
big_npy,
|
601 |
+
index_rate,
|
602 |
+
version,
|
603 |
+
protect,
|
604 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
605 |
+
)
|
606 |
+
s = t
|
607 |
+
if if_f0 == 1:
|
608 |
+
audio_opt.append(
|
609 |
+
self.vc(
|
610 |
+
model,
|
611 |
+
net_g,
|
612 |
+
sid,
|
613 |
+
audio_pad[t:],
|
614 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
615 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
616 |
+
times,
|
617 |
+
index,
|
618 |
+
big_npy,
|
619 |
+
index_rate,
|
620 |
+
version,
|
621 |
+
protect,
|
622 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
623 |
+
)
|
624 |
+
else:
|
625 |
+
audio_opt.append(
|
626 |
+
self.vc(
|
627 |
+
model,
|
628 |
+
net_g,
|
629 |
+
sid,
|
630 |
+
audio_pad[t:],
|
631 |
+
None,
|
632 |
+
None,
|
633 |
+
times,
|
634 |
+
index,
|
635 |
+
big_npy,
|
636 |
+
index_rate,
|
637 |
+
version,
|
638 |
+
protect,
|
639 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
640 |
+
)
|
641 |
+
audio_opt = np.concatenate(audio_opt)
|
642 |
+
if rms_mix_rate != 1:
|
643 |
+
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
644 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
645 |
+
audio_opt = librosa.resample(
|
646 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
647 |
+
)
|
648 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
649 |
+
max_int16 = 32768
|
650 |
+
if audio_max > 1:
|
651 |
+
max_int16 /= audio_max
|
652 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
653 |
+
del pitch, pitchf, sid
|
654 |
+
if torch.cuda.is_available():
|
655 |
+
torch.cuda.empty_cache()
|
656 |
+
return audio_opt
|