import gradio as gr from inference import Inference import os def infer(model, f0_method, audio_file): print("****", audio_file) inference = Inference( model_name=model, f0_method=f0_method, source_audio_path=audio_file, output_file_name=os.path.join("./audio-outputs", os.path.basename(audio_file)) ) output = inference.run() if 'success' in output and output['success']: return output, output['file'] else: return with gr.Blocks() as app: gr.HTML("

Simple RVC Inference - by Juuxn 💻

") model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Url del modelo", show_label=True) audio_path = gr.Audio(label="Archivo de audio", show_label=True, type="filepath", ) f0_method = gr.Dropdown(choices=["harvest", "pm", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny", "rmvpe"], value="harvest", label="Algoritmo", show_label=True) # Salida with gr.Row(): vc_output1 = gr.Textbox(label="Salida") vc_output2 = gr.Audio(label="Audio de salida") btn = gr.Button(value="Convertir") btn.click(infer, inputs=[model_url, f0_method, audio_path], outputs=[vc_output1, vc_output2]) app.queue(concurrency_count=511, max_size=1022).launch(share=True)