surokpro2's picture
Update app.py
b274daf verified
import gradio as gr
import os
import torch
from PIL import Image
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
from utils import add_feature_on_area
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from utils import add_feature_on_area, replace_with_feature
import threading
import spaces
code_to_block = {
"down.2.1": "unet.down_blocks.2.attentions.1",
"mid.0": "unet.mid_block.attentions.0",
"up.0.1": "unet.up_blocks.0.attentions.1",
"up.0.0": "unet.up_blocks.0.attentions.0"
}
lock = threading.Lock()
def process_cache(cache, saes_dict):
top_features_dict = {}
sparse_maps_dict = {}
for code in code_to_block.keys():
block = code_to_block[code]
sae = saes_dict[code]
diff = cache["output"][block] - cache["input"][block]
diff = diff.permute(0, 1, 3, 4, 2).squeeze(0).squeeze(0)
with torch.no_grad():
sparse_maps = sae.encode(diff)
averages = torch.mean(sparse_maps, dim=(0, 1))
top_features = torch.topk(averages, 10).indices
top_features_dict[code] = top_features.cpu().tolist()
sparse_maps_dict[code] = sparse_maps.cpu().numpy()
return top_features_dict, sparse_maps_dict
def plot_image_heatmap(cache, block_select, radio):
code = block_select.split()[0]
feature = int(radio)
block = code_to_block[code]
heatmap = cache["heatmaps"][code][:, :, feature]
heatmap = np.kron(heatmap, np.ones((32, 32)))
image = cache["image"].convert("RGBA")
jet = plt.cm.jet
cmap = jet(np.arange(jet.N))
cmap[:1, -1] = 0
cmap[1:, -1] = 0.6
cmap = ListedColormap(cmap)
heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap))
heatmap_rgba = cmap(heatmap)
heatmap_image = Image.fromarray((heatmap_rgba * 255).astype(np.uint8))
heatmap_with_transparency = Image.alpha_composite(image, heatmap_image)
return heatmap_with_transparency
def create_prompt_part(pipe, saes_dict, demo):
@spaces.GPU
def image_gen(prompt):
lock.acquire()
try:
images, cache = pipe.run_with_cache(
prompt,
positions_to_cache=list(code_to_block.values()),
num_inference_steps=1,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0,
save_input=True,
save_output=True
)
finally:
lock.release()
top_features_dict, top_sparse_maps_dict = process_cache(cache, saes_dict)
return images.images[0], {
"image": images.images[0],
"heatmaps": top_sparse_maps_dict,
"features": top_features_dict
}
def update_radio(cache, block_select):
code = block_select.split()[0]
return gr.update(choices=cache["features"][code])
def update_img(cache, block_select, radio):
new_img = plot_image_heatmap(cache, block_select, radio)
return new_img
with gr.Tab("Explore", elem_classes="tabs") as explore_tab:
cache = gr.State(value={
"image": None,
"heatmaps": None,
"features": []
})
with gr.Row():
with gr.Column(scale=7):
with gr.Row(equal_height=True):
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party and eathing a dish with peas.")
button = gr.Button("Generate", elem_classes="generate_button1")
with gr.Row():
image = gr.Image(width=512, height=512, image_mode="RGB", label="Generated image")
with gr.Column(scale=4):
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block",
elem_id="block_select",
interactive=True
)
radio = gr.Radio(choices=[], label="Select a feature", interactive=True)
button.click(image_gen, [prompt_field], outputs=[image, cache])
cache.change(update_radio, [cache, block_select], outputs=[radio])
block_select.select(update_radio, [cache, block_select], outputs=[radio])
radio.select(update_img, [cache, block_select, radio], outputs=[image])
demo.load(image_gen, [prompt_field], outputs=[image, cache])
return explore_tab
def downsample_mask(image, factor):
downsampled = image.reshape(
(image.shape[0] // factor, factor,
image.shape[1] // factor, factor)
)
downsampled = downsampled.mean(axis=(1, 3))
return downsampled
def create_intervene_part(pipe: HookedStableDiffusionXLPipeline, saes_dict, means_dict, demo):
@spaces.GPU
def image_gen(prompt, num_steps):
lock.acquire()
try:
images = pipe.run_with_hooks(
prompt,
position_hook_dict={},
num_inference_steps=num_steps,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0
)
finally:
lock.release()
return images.images[0]
@spaces.GPU
def image_mod(prompt, block_str, brush_index, strength, num_steps, input_image):
block = block_str.split(" ")[0]
mask = (input_image["layers"][0] > 0)[:, :, -1].astype(float)
mask = downsample_mask(mask, 32)
mask = torch.tensor(mask, dtype=torch.float32, device="cuda")
if mask.sum() == 0:
gr.Info("No mask selected, please draw on the input image")
def hook(module, input, output):
return add_feature_on_area(
saes_dict[block],
brush_index,
mask * means_dict[block][brush_index] * strength,
module,
input,
output
)
lock.acquire()
try:
image = pipe.run_with_hooks(
prompt,
position_hook_dict={code_to_block[block]: hook},
num_inference_steps=num_steps,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0
).images[0]
finally:
lock.release()
return image
@spaces.GPU
def feature_icon(block_str, brush_index):
block = block_str.split(" ")[0]
if block in ["mid.0", "up.0.0"]:
gr.Info("Note that Feature Icon works best with down.2.1 and up.0.1 blocks but feel free to explore", duration=3)
def hook(module, input, output):
return replace_with_feature(
saes_dict[block],
brush_index,
means_dict[block][brush_index] * saes_dict[block].k,
module,
input,
output
)
lock.acquire()
try:
image = pipe.run_with_hooks(
"",
position_hook_dict={code_to_block[block]: hook},
num_inference_steps=1,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0
).images[0]
finally:
lock.release()
return image
with gr.Tab("Paint!", elem_classes="tabs") as intervene_tab:
image_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=3):
# Generation column
with gr.Row():
# prompt and num_steps
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A dog plays with a ball, cartoon", elem_id="prompt_input")
num_steps = gr.Number(value=1, label="Number of steps", minimum=1, maximum=4, elem_id="num_steps", precision=0)
with gr.Row():
#Generate button
button_generate = gr.Button("Generate", elem_id="generate_button")
with gr.Column(scale=3):
# Intervention column
with gr.Row():
# dropdowns and number inputs
with gr.Column(scale=7):
with gr.Row():
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block",
elem_id="block_select"
)
brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, elem_id="brush_index", precision=0)
with gr.Row():
button_icon = gr.Button('Feature Icon', elem_id="feature_icon_button")
with gr.Column(scale=3):
with gr.Row():
strength = gr.Number(value=10, label="Strength", minimum=-40, maximum=40, elem_id="strength", precision=2)
with gr.Row():
button = gr.Button('Apply', elem_id="apply_button")
with gr.Row():
with gr.Column():
# Input image
i_image = gr.Sketchpad(
height=610,
layers=False, transforms=[], placeholder="Generate and paint!",
brush=gr.Brush(default_size=64, color_mode="fixed", colors=['black']),
container=False,
canvas_size=(512, 512),
label="Input Image")
clear_button = gr.Button("Clear")
clear_button.click(lambda x: x, [image_state], [i_image])
# Output image
o_image = gr.Image(width=512, height=512, label="Output Image")
# Set up the click events
button_generate.click(image_gen, inputs=[prompt_field, num_steps], outputs=[image_state])
image_state.change(lambda x: x, [image_state], [i_image])
button.click(image_mod,
inputs=[prompt_field, block_select, brush_index, strength, num_steps, i_image],
outputs=o_image)
button_icon.click(feature_icon, inputs=[block_select, brush_index], outputs=o_image)
demo.load(image_gen, [prompt_field, num_steps], outputs=[image_state])
return intervene_tab
def create_top_images_part(demo):
def update_top_images(block_select, brush_index):
block = block_select.split(" ")[0]
url = f"https://huggingface.co/surokpro2/sdxl_sae_images/resolve/main/{block}/{brush_index}.jpg"
return url
with gr.Tab("Top Images", elem_classes="tabs") as top_images_tab:
with gr.Row():
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block"
)
brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, precision=0)
with gr.Row():
image = gr.Image(width=600, height=600, label="Top Images")
block_select.select(update_top_images, [block_select, brush_index], outputs=[image])
brush_index.change(update_top_images, [block_select, brush_index], outputs=[image])
demo.load(update_top_images, [block_select, brush_index], outputs=[image])
return top_images_tab
def create_intro_part():
with gr.Tab("Instructions", elem_classes="tabs") as intro_tab:
gr.Markdown(
'''# Unpacking SDXL Turbo with Sparse Autoencoders
## Demo Overview
This demo showcases the use of Sparse Autoencoders (SAEs) to understand the features learned by the Stable Diffusion XL Turbo model.
## How to Use
### Explore
* Enter a prompt in the text box and click on the "Generate" button to generate an image.
* You can observe the active features in different blocks plot on top of the generated image.
### Top Images
* For each feature, you can view the top images that activate the feature the most.
### Paint!
* Generate an image using the prompt.
* Paint on the generated image to apply interventions.
* Use the "Feature Icon" button to understand how the selected brush functions.
### Remarks
* Not all brushes mix well with all images. Experiment with different brushes and strengths.
* Feature Icon works best with `down.2.1 (composition)` and `up.0.1 (style)` blocks.
* This demo is provided for research purposes only. We do not take responsibility for the content generated by the demo.
### Interesting features to try
To get started, try the following features:
- down.2.1 (composition): 2301 (evil) 3747 (image frame) 4998 (cartoon)
- up.0.1 (style): 4977 (tiger stripes) 90 (fur) 2615 (twilight blur)
'''
)
return intro_tab
def create_demo(pipe, saes_dict, means_dict):
custom_css = """
.tabs button {
font-size: 20px !important; /* Adjust font size for tab text */
padding: 10px !important; /* Adjust padding to make the tabs bigger */
font-weight: bold !important; /* Adjust font weight to make the text bold */
}
.generate_button1 {
max-width: 160px !important;
margin-top: 20px !important;
margin-bottom: 20px !important;
}
"""
with gr.Blocks(css=custom_css) as demo:
with create_intro_part():
pass
with create_prompt_part(pipe, saes_dict, demo):
pass
with create_top_images_part(demo):
pass
with create_intervene_part(pipe, saes_dict, means_dict, demo):
pass
return demo
if __name__ == "__main__":
import os
import gradio as gr
import torch
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
dtype=torch.float32
pipe = HookedStableDiffusionXLPipeline.from_pretrained(
'stabilityai/sdxl-turbo',
torch_dtype=dtype,
variant=("fp16" if dtype==torch.float16 else None)
)
pipe.set_progress_bar_config(disable=True)
pipe.to('cuda')
path_to_checkpoints = './checkpoints/'
code_to_block = {
"down.2.1": "unet.down_blocks.2.attentions.1",
"mid.0": "unet.mid_block.attentions.0",
"up.0.1": "unet.up_blocks.0.attentions.1",
"up.0.0": "unet.up_blocks.0.attentions.0"
}
saes_dict = {}
means_dict = {}
for code, block in code_to_block.items():
sae = SparseAutoencoder.load_from_disk(
os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final"),
)
means = torch.load(
os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final", "mean.pt"),
weights_only=True
)
saes_dict[code] = sae.to('cuda', dtype=dtype)
means_dict[code] = means.to('cuda', dtype=dtype)
demo = create_demo(pipe, saes_dict, means_dict)
demo.launch()