Spaces:
Build error
Build error
import torch | |
import numpy as np | |
import gradio as gr | |
from transformers import AutoProcessor, SpeechT5ForTextToSpeech, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, SpeechT5HifiGan | |
from datasets import load_dataset | |
device = "cpu" | |
# load speech translation checkpoint | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
# load text-to-speech checkpoint | |
tts_processor = AutoProcessor.from_pretrained("susnato/speecht5_finetuned_voxpopuli_nl") | |
tts_model = SpeechT5ForTextToSpeech.from_pretrained("susnato/speecht5_finetuned_voxpopuli_nl").to(device) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) | |
# load speaker embeddings | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
def transcribe(audio): | |
outputs = asr_pipe(audio, generate_kwargs={"task": "transcribe", | |
"language":"nl", | |
"use_cache":True, | |
"max_new_tokens":128}) | |
return outputs["text"] | |
def synthesise(text): | |
inputs = tts_processor(text=text, | |
truncation=True, | |
return_tensors="pt") | |
speech = tts_model.generate_speech(inputs["input_ids"].to(device), | |
speaker_embeddings.to(device), | |
vocoder=vocoder, | |
) | |
return speech.cpu().numpy() | |
def speech_to_dutch_translation(audio): | |
dutch_text = transcribe(audio) | |
speech = synthesise(dutch_text) | |
speech = (speech * 32767).astype(np.int16) | |
return 16_000, speech | |
title = "Speech-To-Speech-Translation for Hindi" | |
description = """ | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_dutch_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_dutch_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
# examples=["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch(debug=False) |