susnato's picture
Update app.py
cb99941
import torch
import numpy as np
import gradio as gr
from transformers import AutoProcessor, SpeechT5ForTextToSpeech, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, SpeechT5HifiGan
from datasets import load_dataset
device = "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# load text-to-speech checkpoint
tts_processor = AutoProcessor.from_pretrained("susnato/speecht5_finetuned_voxpopuli_nl")
tts_model = SpeechT5ForTextToSpeech.from_pretrained("susnato/speecht5_finetuned_voxpopuli_nl").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
# load speaker embeddings
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def transcribe(audio):
outputs = asr_pipe(audio, generate_kwargs={"task": "transcribe",
"language":"nl",
"use_cache":True,
"max_new_tokens":128})
return outputs["text"]
def synthesise(text):
inputs = tts_processor(text=text,
truncation=True,
return_tensors="pt")
speech = tts_model.generate_speech(inputs["input_ids"].to(device),
speaker_embeddings.to(device),
vocoder=vocoder,
)
return speech.cpu().numpy()
def speech_to_dutch_translation(audio):
dutch_text = transcribe(audio)
speech = synthesise(dutch_text)
speech = (speech * 32767).astype(np.int16)
return 16_000, speech
title = "Speech-To-Speech-Translation for Hindi"
description = """
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_dutch_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_dutch_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
# examples=["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch(debug=False)