Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,7 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
-
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -12,38 +11,44 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor =
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
-
def
|
25 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
-
|
29 |
def synthesise(text):
|
30 |
inputs = processor(text=text, return_tensors="pt")
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
def speech_to_hindi_translation(audio):
|
36 |
-
|
37 |
-
|
|
|
38 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
-
return
|
40 |
|
41 |
|
42 |
-
title = "
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
-
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|
49 |
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
+
from transformers import AutoProcessor, AutoModel, pipeline, MarianMTModel, MarianMTTokenizer
|
|
|
6 |
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
11 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
12 |
|
13 |
# load text-to-speech checkpoint and speaker embeddings
|
14 |
+
processor = AutoProcessor.from_pretrained("suno/bark-small").to(device)
|
15 |
+
model = AutoModel.from_pretrained("suno/bark-small").to(device)
|
16 |
+
|
17 |
+
# load MartianMT model for translating English to Hindi.
|
18 |
+
martian_mt_model = MarianMTModel.from_pretrained("AbhirupGhosh/opus-mt-finetuned-en-hi")
|
19 |
+
martian_mt_tokenizer = MarianTokenizer.from_pretrained("AbhirupGhosh/opus-mt-finetuned-en-hi")
|
20 |
+
|
21 |
|
22 |
+
def translate_english_to_hindi(english_text):
|
23 |
+
tokenized_text = martian_mt_tokenizer.encode(english_text, return_tensors="pt")
|
24 |
+
generated_token_ids = martian_mt_model.generate(tokenized_text)
|
25 |
+
hindi_text = martian_mt_tokenizer.decode(generated_token_ids.numpy()[0])
|
26 |
+
hindi_text = hindi_text.replace("</s>", "")
|
27 |
+
hindi_text = hindi_text.replace("<pad>", "")
|
28 |
|
29 |
+
return hindi_text
|
|
|
30 |
|
31 |
|
32 |
+
def translate_to_english(audio):
|
33 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe"})
|
34 |
return outputs["text"]
|
35 |
|
|
|
36 |
def synthesise(text):
|
37 |
inputs = processor(text=text, return_tensors="pt")
|
38 |
+
speech_values = model.generate(**inputs)
|
39 |
+
|
40 |
+
return speech_values
|
41 |
|
42 |
def speech_to_hindi_translation(audio):
|
43 |
+
english_text = translate_to_english(audio)
|
44 |
+
hindi_text = translate_english_to_hindi(english_text)
|
45 |
+
synthesised_speech = synthesise(hindi_text)
|
46 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
47 |
+
return 22050, synthesised_speech
|
48 |
|
49 |
|
50 |
+
title = "Speech-To-Speech-Translation for Hindi"
|
51 |
description = """
|
|
|
|
|
|
|
52 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
53 |
"""
|
54 |
|