susnato commited on
Commit
aa23905
1 Parent(s): 43bc02c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -19
app.py CHANGED
@@ -2,8 +2,7 @@ import gradio as gr
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
-
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,38 +11,44 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
 
 
 
 
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
 
 
 
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
- def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe"})
26
  return outputs["text"]
27
 
28
-
29
  def synthesise(text):
30
  inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
33
-
34
 
35
  def speech_to_hindi_translation(audio):
36
- translated_text = translate(audio)
37
- synthesised_speech = synthesise(translated_text)
 
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
- return 16000, synthesised_speech
40
 
41
 
42
- title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
 
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
+ from transformers import AutoProcessor, AutoModel, pipeline, MarianMTModel, MarianMTTokenizer
 
6
 
7
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
11
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
12
 
13
  # load text-to-speech checkpoint and speaker embeddings
14
+ processor = AutoProcessor.from_pretrained("suno/bark-small").to(device)
15
+ model = AutoModel.from_pretrained("suno/bark-small").to(device)
16
+
17
+ # load MartianMT model for translating English to Hindi.
18
+ martian_mt_model = MarianMTModel.from_pretrained("AbhirupGhosh/opus-mt-finetuned-en-hi")
19
+ martian_mt_tokenizer = MarianTokenizer.from_pretrained("AbhirupGhosh/opus-mt-finetuned-en-hi")
20
+
21
 
22
+ def translate_english_to_hindi(english_text):
23
+ tokenized_text = martian_mt_tokenizer.encode(english_text, return_tensors="pt")
24
+ generated_token_ids = martian_mt_model.generate(tokenized_text)
25
+ hindi_text = martian_mt_tokenizer.decode(generated_token_ids.numpy()[0])
26
+ hindi_text = hindi_text.replace("</s>", "")
27
+ hindi_text = hindi_text.replace("<pad>", "")
28
 
29
+ return hindi_text
 
30
 
31
 
32
+ def translate_to_english(audio):
33
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe"})
34
  return outputs["text"]
35
 
 
36
  def synthesise(text):
37
  inputs = processor(text=text, return_tensors="pt")
38
+ speech_values = model.generate(**inputs)
39
+
40
+ return speech_values
41
 
42
  def speech_to_hindi_translation(audio):
43
+ english_text = translate_to_english(audio)
44
+ hindi_text = translate_english_to_hindi(english_text)
45
+ synthesised_speech = synthesise(hindi_text)
46
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
47
+ return 22050, synthesised_speech
48
 
49
 
50
+ title = "Speech-To-Speech-Translation for Hindi"
51
  description = """
 
 
 
52
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
53
  """
54