Spaces:
Runtime error
Runtime error
wip
Browse files
app.py
CHANGED
@@ -11,6 +11,8 @@ document_embedding = None
|
|
11 |
docs_df = None
|
12 |
|
13 |
def text_embedding_batch():
|
|
|
|
|
14 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
15 |
dataset = ir_datasets.load("beir/fiqa/dev")
|
16 |
docs_df = pd.DataFrame(dataset.docs_iter()).set_index("doc_id").sample(frac=0.0001)
|
@@ -26,6 +28,7 @@ def text_embedding_batch():
|
|
26 |
|
27 |
|
28 |
def text_embedding_single(query: str):
|
|
|
29 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
30 |
predictor = MultiModalPredictor(
|
31 |
pipeline="feature_extraction",
|
@@ -39,6 +42,11 @@ def text_embedding_single(query: str):
|
|
39 |
|
40 |
|
41 |
def rank_document():
|
|
|
|
|
|
|
|
|
|
|
42 |
q_norm = query_embedding / np.linalg.norm(query_embedding, axis=-1, keepdims=True)
|
43 |
print(q_norm)
|
44 |
d_norm = document_embedding / np.linalg.norm(document_embedding, axis=-1, keepdims=True)
|
|
|
11 |
docs_df = None
|
12 |
|
13 |
def text_embedding_batch():
|
14 |
+
global query_embedding
|
15 |
+
global docs_df
|
16 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
17 |
dataset = ir_datasets.load("beir/fiqa/dev")
|
18 |
docs_df = pd.DataFrame(dataset.docs_iter()).set_index("doc_id").sample(frac=0.0001)
|
|
|
28 |
|
29 |
|
30 |
def text_embedding_single(query: str):
|
31 |
+
global document_embedding
|
32 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
33 |
predictor = MultiModalPredictor(
|
34 |
pipeline="feature_extraction",
|
|
|
42 |
|
43 |
|
44 |
def rank_document():
|
45 |
+
global query_embedding
|
46 |
+
global document_embedding
|
47 |
+
global docs_df
|
48 |
+
print('~~~~~here')
|
49 |
+
print('~~~~~~~~', query_embedding, document_embedding)
|
50 |
q_norm = query_embedding / np.linalg.norm(query_embedding, axis=-1, keepdims=True)
|
51 |
print(q_norm)
|
52 |
d_norm = document_embedding / np.linalg.norm(document_embedding, axis=-1, keepdims=True)
|