Spaces:
Runtime error
Runtime error
wip
Browse files- app.py +27 -7
- automm_semantic_embedding.py +43 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,18 +1,24 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
from autogluon.multimodal import MultiModalPredictor
|
3 |
|
4 |
|
5 |
def text_embedding(query: str):
|
6 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
7 |
-
|
|
|
8 |
predictor = MultiModalPredictor(
|
9 |
pipeline="feature_extraction",
|
10 |
hyperparameters={
|
11 |
"model.hf_text.checkpoint_name": model_name
|
12 |
}
|
13 |
)
|
|
|
|
|
14 |
query_embedding = predictor.extract_embedding([query])
|
15 |
-
return query_embedding["0"]
|
16 |
|
17 |
|
18 |
def main():
|
@@ -20,13 +26,27 @@ def main():
|
|
20 |
gr.Markdown("# Text Embedding for Search Queries")
|
21 |
gr.Markdown("Ask an open question!")
|
22 |
with gr.Row():
|
23 |
-
|
24 |
with gr.Row():
|
25 |
-
|
|
|
|
|
|
|
26 |
with gr.Row():
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
demo.launch()
|
32 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import ir_datasets
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
from autogluon.multimodal import MultiModalPredictor
|
6 |
|
7 |
|
8 |
def text_embedding(query: str):
|
9 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
10 |
+
# dataset = ir_datasets.load("beir/fiqa/dev")
|
11 |
+
# docs_df = pd.DataFrame(dataset.docs_iter()).set_index("doc_id").sample(frac=0.001)
|
12 |
predictor = MultiModalPredictor(
|
13 |
pipeline="feature_extraction",
|
14 |
hyperparameters={
|
15 |
"model.hf_text.checkpoint_name": model_name
|
16 |
}
|
17 |
)
|
18 |
+
# query_embedding = predictor.extract_embedding(docs_df)
|
19 |
+
# return query_embedding["text"]
|
20 |
query_embedding = predictor.extract_embedding([query])
|
21 |
+
return query_embedding["0"]
|
22 |
|
23 |
|
24 |
def main():
|
|
|
26 |
gr.Markdown("# Text Embedding for Search Queries")
|
27 |
gr.Markdown("Ask an open question!")
|
28 |
with gr.Row():
|
29 |
+
inp_single = gr.Textbox(show_label=False)
|
30 |
with gr.Row():
|
31 |
+
btn_single = gr.Button("Generate Embedding")
|
32 |
+
with gr.Row():
|
33 |
+
out_single = gr.DataFrame(label="Embedding", show_label=True)
|
34 |
+
gr.Markdown("You can select one of the sample datasets for batch inference")
|
35 |
with gr.Row():
|
36 |
+
with gr.Column():
|
37 |
+
btn_fiqa = gr.Button("fiqa")
|
38 |
+
with gr.Column():
|
39 |
+
btn_faiss = gr.Button("faiss")
|
40 |
+
with gr.Row():
|
41 |
+
out_batch = gr.DataFrame(label="Embedding", show_label=True)
|
42 |
+
gr.Markdown("You can also try out our batch inference by uploading a file")
|
43 |
+
with gr.Row():
|
44 |
+
out_batch = gr.File(interactive=True)
|
45 |
+
with gr.Row():
|
46 |
+
btn_file = gr.Button("Generate Embedding")
|
47 |
+
|
48 |
+
btn_single.click(fn=text_embedding, inputs=inp_single, outputs=out_single)
|
49 |
+
btn_file.click(fn=text_embedding, inputs=inp_single, outputs=out_single)
|
50 |
|
51 |
demo.launch()
|
52 |
|
automm_semantic_embedding.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ir_datasets
|
2 |
+
import pandas as pd
|
3 |
+
from autogluon.multimodal import MultiModalPredictor
|
4 |
+
|
5 |
+
|
6 |
+
dataset = ir_datasets.load("beir/fiqa/dev")
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
dataset = ir_datasets.load("beir/fiqa/dev")
|
12 |
+
|
13 |
+
docs_df = pd.DataFrame(dataset.docs_iter()).set_index("doc_id").sample(frac=0.0001)
|
14 |
+
query_df = pd.DataFrame(dataset.queries_iter()).set_index("query_id")
|
15 |
+
|
16 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
17 |
+
|
18 |
+
predictor = MultiModalPredictor(
|
19 |
+
pipeline="feature_extraction",
|
20 |
+
hyperparameters={
|
21 |
+
"model.hf_text.checkpoint_name": model_name
|
22 |
+
}
|
23 |
+
)
|
24 |
+
|
25 |
+
document_embedding = predictor.extract_embedding(docs_df)
|
26 |
+
|
27 |
+
query = "What happened when the dot com bubble burst?"
|
28 |
+
query_embedding = predictor.extract_embedding([query])
|
29 |
+
|
30 |
+
import numpy as np
|
31 |
+
|
32 |
+
q_norm = query_embedding['0'] / np.linalg.norm(query_embedding['0'], axis=-1, keepdims=True)
|
33 |
+
d_norm = document_embedding['text'] / np.linalg.norm(document_embedding['text'], axis=-1, keepdims=True)
|
34 |
+
scores = d_norm.dot(q_norm[0])
|
35 |
+
|
36 |
+
|
37 |
+
print(f'Question: {query}')
|
38 |
+
print()
|
39 |
+
for idx in np.argsort(-scores)[:2]:
|
40 |
+
print(f'Top {idx} result:')
|
41 |
+
print('-----------------')
|
42 |
+
print(docs_df['text'].iloc[idx])
|
43 |
+
print()
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
gradio
|
2 |
wheel
|
3 |
setuptools
|
|
|
4 |
git+https://github.com/awslabs/autogluon.git@master#subdirectory=autogluon
|
|
|
1 |
gradio
|
2 |
wheel
|
3 |
setuptools
|
4 |
+
ir_datasets
|
5 |
git+https://github.com/awslabs/autogluon.git@master#subdirectory=autogluon
|