File size: 3,585 Bytes
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import random

import numpy as np
import cv2
import os
import PIL

annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')

def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y


def resize_image(input_image, resolution, short = False, interpolation=None):
    if isinstance(input_image,PIL.Image.Image):
        mode = 'pil'
        W,H = input_image.size

    elif isinstance(input_image,np.ndarray):
        mode = 'cv2'
        H, W, _ = input_image.shape

    H = float(H)
    W = float(W)
    if short:
        k = float(resolution) / min(H, W) # k>1 ζ”Ύε€§οΌŒ k<1 缩小
    else:
        k = float(resolution) / max(H, W) # k>1 ζ”Ύε€§οΌŒ k<1 缩小
    H *= k 
    W *= k
    H = int(np.round(H / 64.0)) * 64
    W = int(np.round(W / 64.0)) * 64
    
    if mode == 'cv2':
        if interpolation is None:
            interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA
        img = cv2.resize(input_image, (W, H), interpolation=interpolation)

    elif mode == 'pil':
        if interpolation is None:
            interpolation = PIL.Image.LANCZOS if k > 1 else PIL.Image.BILINEAR
        img = input_image.resize((W, H), resample=interpolation)
    
    return img

# def resize_image(input_image, resolution):
#     H, W, C = input_image.shape
#     H = float(H)
#     W = float(W)
#     k = float(resolution) / min(H, W)
#     H *= k
#     W *= k
#     H = int(np.round(H / 64.0)) * 64
#     W = int(np.round(W / 64.0)) * 64
#     img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
#     return img


def nms(x, t, s):
    x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)

    f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
    f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
    f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
    f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)

    y = np.zeros_like(x)

    for f in [f1, f2, f3, f4]:
        np.putmask(y, cv2.dilate(x, kernel=f) == x, x)

    z = np.zeros_like(y, dtype=np.uint8)
    z[y > t] = 255
    return z


def make_noise_disk(H, W, C, F):
    noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
    noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
    noise = noise[F: F + H, F: F + W]
    noise -= np.min(noise)
    noise /= np.max(noise)
    if C == 1:
        noise = noise[:, :, None]
    return noise


def min_max_norm(x):
    x -= np.min(x)
    x /= np.maximum(np.max(x), 1e-5)
    return x


def safe_step(x, step=2):
    y = x.astype(np.float32) * float(step + 1)
    y = y.astype(np.int32).astype(np.float32) / float(step)
    return y


def img2mask(img, H, W, low=10, high=90):
    assert img.ndim == 3 or img.ndim == 2
    assert img.dtype == np.uint8

    if img.ndim == 3:
        y = img[:, :, random.randrange(0, img.shape[2])]
    else:
        y = img

    y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)

    if random.uniform(0, 1) < 0.5:
        y = 255 - y

    return y < np.percentile(y, random.randrange(low, high))