Spaces:
Runtime error
Runtime error
File size: 3,585 Bytes
6c91ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import random
import numpy as np
import cv2
import os
import PIL
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image(input_image, resolution, short = False, interpolation=None):
if isinstance(input_image,PIL.Image.Image):
mode = 'pil'
W,H = input_image.size
elif isinstance(input_image,np.ndarray):
mode = 'cv2'
H, W, _ = input_image.shape
H = float(H)
W = float(W)
if short:
k = float(resolution) / min(H, W) # k>1 ζΎε€§οΌ k<1 ηΌ©ε°
else:
k = float(resolution) / max(H, W) # k>1 ζΎε€§οΌ k<1 ηΌ©ε°
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
if mode == 'cv2':
if interpolation is None:
interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA
img = cv2.resize(input_image, (W, H), interpolation=interpolation)
elif mode == 'pil':
if interpolation is None:
interpolation = PIL.Image.LANCZOS if k > 1 else PIL.Image.BILINEAR
img = input_image.resize((W, H), resample=interpolation)
return img
# def resize_image(input_image, resolution):
# H, W, C = input_image.shape
# H = float(H)
# W = float(W)
# k = float(resolution) / min(H, W)
# H *= k
# W *= k
# H = int(np.round(H / 64.0)) * 64
# W = int(np.round(W / 64.0)) * 64
# img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
# return img
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
def make_noise_disk(H, W, C, F):
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
noise = noise[F: F + H, F: F + W]
noise -= np.min(noise)
noise /= np.max(noise)
if C == 1:
noise = noise[:, :, None]
return noise
def min_max_norm(x):
x -= np.min(x)
x /= np.maximum(np.max(x), 1e-5)
return x
def safe_step(x, step=2):
y = x.astype(np.float32) * float(step + 1)
y = y.astype(np.int32).astype(np.float32) / float(step)
return y
def img2mask(img, H, W, low=10, high=90):
assert img.ndim == 3 or img.ndim == 2
assert img.dtype == np.uint8
if img.ndim == 3:
y = img[:, :, random.randrange(0, img.shape[2])]
else:
y = img
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)
if random.uniform(0, 1) < 0.5:
y = 255 - y
return y < np.percentile(y, random.randrange(low, high))
|