Spaces:
Runtime error
Runtime error
File size: 11,618 Bytes
d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 6c91ee7 08f2519 d5f497d 6c91ee7 08f2519 6c91ee7 d5f497d 95ce3cf 08f2519 6c91ee7 d5f497d 6c91ee7 9cdf8f2 d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 9cdf8f2 d5f497d 6c91ee7 d5f497d d72888b 08f2519 5bc0c16 08f2519 6c91ee7 d5f497d 8004741 d5f497d e9f3ef9 6c91ee7 08f2519 9cdf8f2 a1bb479 6c91ee7 9cdf8f2 6c91ee7 9cdf8f2 6c91ee7 08f2519 6c91ee7 d5f497d 6c91ee7 a1bb479 08f2519 e9f3ef9 6c91ee7 08f2519 6c91ee7 9de30d4 cd4f227 e9f3ef9 08f2519 9cdf8f2 a1bb479 e9f3ef9 9cdf8f2 e9f3ef9 9cdf8f2 e9f3ef9 08f2519 e9f3ef9 a1bb479 08f2519 e9f3ef9 08f2519 e9f3ef9 9de30d4 fad18b4 78ad020 08f2519 78ad020 08f2519 d5f497d d890da3 d5f497d 20c2217 83bde13 20c2217 d5f497d f92dc60 d5f497d d890da3 d5f497d 6c91ee7 88a3aee d5f497d 9cdf8f2 d5f497d 9cdf8f2 d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 6c91ee7 9cdf8f2 6c91ee7 d5f497d 08f2519 78ad020 20c2217 d5f497d 6c91ee7 9de30d4 d5f497d e9f3ef9 78ad020 08f2519 7132521 78ad020 e9f3ef9 78ad020 08f2519 7132521 78ad020 d5f497d 78ad020 e9f3ef9 08f2519 9de30d4 78ad020 e9f3ef9 08f2519 9de30d4 78ad020 8004741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.util import resize_image, HWC3
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size )
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet = controlnet_depth,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
)
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet = controlnet_canny,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
)
for pipe in [pipe_depth]:
if hasattr(pipe.unet, 'encoder_hid_proj'):
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
pipe_depth.load_ip_adapter(f'{ckpt_dir_ipa}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
np_image = image.copy()
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
np_image = np_image[:, :, None]
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
np_image = HWC3(np_image)
return Image.fromarray(np_image)
model_midas = MidasDetector()
@spaces.GPU
def process_depth_condition_midas(img, res = 1024):
h,w,_ = img.shape
img = resize_image(HWC3(img), res)
result = HWC3(model_midas(img))
result = cv2.resize(result, (w,h))
return Image.fromarray(result)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer_depth(prompt,
image = None,
ipa_img = None,
negative_prompt = "nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
seed = 66,
randomize_seed = False,
guidance_scale = 5.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.5,
control_guidance_end = 0.9,
strength = 1.0,
ip_scale = 0.5,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_depth.to("cuda")
pipe.set_ip_adapter_scale([ip_scale])
condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
image = pipe(
prompt= prompt ,
image = init_image,
controlnet_conditioning_scale = controlnet_conditioning_scale,
control_guidance_end = control_guidance_end,
ip_adapter_image=[ipa_img],
strength= strength ,
control_image = condi_img,
negative_prompt= negative_prompt ,
num_inference_steps= num_inference_steps,
guidance_scale= guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed
@spaces.GPU
def infer_canny(prompt,
image = None,
ipa_img = None,
negative_prompt = "nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
seed = 66,
randomize_seed = False,
guidance_scale = 5.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.5,
control_guidance_end = 0.9,
strength = 1.0,
ip_scale = 0.5,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_canny.to("cuda")
pipe.set_ip_adapter_scale([ip_scale])
condi_img = process_canny_condition(np.array(init_image))
image = pipe(
prompt= prompt ,
image = init_image,
controlnet_conditioning_scale = controlnet_conditioning_scale,
control_guidance_end = control_guidance_end,
ip_adapter_image=[ipa_img],
strength= strength ,
control_image = condi_img,
negative_prompt= negative_prompt ,
num_inference_steps= num_inference_steps,
guidance_scale= guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed
canny_examples = [
["一个红色头发的女孩,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质",
"image/woman_2.png", "image/2.png"],
]
depth_examples = [
["一个漂亮的女孩,最好的质量,超细节,8K画质",
"image/1.png","image/woman_1.png"],
]
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
#button {
color: blue;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(css=css) as Kolors:
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Row():
image = gr.Image(label="Image", type="pil")
ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=30,
)
with gr.Row():
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
control_guidance_end = gr.Slider(
label="Control Guidance End",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
ip_scale = gr.Slider(
label="IP_Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
canny_button = gr.Button("Canny", elem_id="button")
depth_button = gr.Button("Depth", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Gallery(label="Result", show_label=False, columns=2)
seed_used = gr.Number(label="Seed Used")
with gr.Row():
gr.Examples(
fn = infer_canny,
examples = canny_examples,
inputs = [prompt, image, ipa_image],
outputs = [result, seed_used],
label = "Canny"
)
with gr.Row():
gr.Examples(
fn = infer_depth,
examples = depth_examples,
inputs = [prompt, image, ipa_image],
outputs = [result, seed_used],
label = "Depth"
)
canny_button.click(
fn = infer_canny,
inputs = [prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
outputs = [result, seed_used]
)
depth_button.click(
fn = infer_depth,
inputs = [prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
outputs = [result, seed_used]
)
Kolors.queue().launch(debug=True)
|