File size: 8,933 Bytes
a64b7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from basicsr.utils.registry import ARCH_REGISTRY
from .hifacegan_util import BaseNetwork, LIPEncoder, SPADEResnetBlock, get_nonspade_norm_layer


class SPADEGenerator(BaseNetwork):
    """Generator with SPADEResBlock"""

    def __init__(self,
                 num_in_ch=3,
                 num_feat=64,
                 use_vae=False,
                 z_dim=256,
                 crop_size=512,
                 norm_g='spectralspadesyncbatch3x3',
                 is_train=True,
                 init_train_phase=3):  # progressive training disabled
        super().__init__()
        self.nf = num_feat
        self.input_nc = num_in_ch
        self.is_train = is_train
        self.train_phase = init_train_phase

        self.scale_ratio = 5  # hardcoded now
        self.sw = crop_size // (2**self.scale_ratio)
        self.sh = self.sw  # 20210519: By default use square image, aspect_ratio = 1.0

        if use_vae:
            # In case of VAE, we will sample from random z vector
            self.fc = nn.Linear(z_dim, 16 * self.nf * self.sw * self.sh)
        else:
            # Otherwise, we make the network deterministic by starting with
            # downsampled segmentation map instead of random z
            self.fc = nn.Conv2d(num_in_ch, 16 * self.nf, 3, padding=1)

        self.head_0 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)

        self.g_middle_0 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
        self.g_middle_1 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)

        self.ups = nn.ModuleList([
            SPADEResnetBlock(16 * self.nf, 8 * self.nf, norm_g),
            SPADEResnetBlock(8 * self.nf, 4 * self.nf, norm_g),
            SPADEResnetBlock(4 * self.nf, 2 * self.nf, norm_g),
            SPADEResnetBlock(2 * self.nf, 1 * self.nf, norm_g)
        ])

        self.to_rgbs = nn.ModuleList([
            nn.Conv2d(8 * self.nf, 3, 3, padding=1),
            nn.Conv2d(4 * self.nf, 3, 3, padding=1),
            nn.Conv2d(2 * self.nf, 3, 3, padding=1),
            nn.Conv2d(1 * self.nf, 3, 3, padding=1)
        ])

        self.up = nn.Upsample(scale_factor=2)

    def encode(self, input_tensor):
        """
        Encode input_tensor into feature maps, can be overridden in derived classes
        Default: nearest downsampling of 2**5 = 32 times
        """
        h, w = input_tensor.size()[-2:]
        sh, sw = h // 2**self.scale_ratio, w // 2**self.scale_ratio
        x = F.interpolate(input_tensor, size=(sh, sw))
        return self.fc(x)

    def forward(self, x):
        # In oroginal SPADE, seg means a segmentation map, but here we use x instead.
        seg = x

        x = self.encode(x)
        x = self.head_0(x, seg)

        x = self.up(x)
        x = self.g_middle_0(x, seg)
        x = self.g_middle_1(x, seg)

        if self.is_train:
            phase = self.train_phase + 1
        else:
            phase = len(self.to_rgbs)

        for i in range(phase):
            x = self.up(x)
            x = self.ups[i](x, seg)

        x = self.to_rgbs[phase - 1](F.leaky_relu(x, 2e-1))
        x = torch.tanh(x)

        return x

    def mixed_guidance_forward(self, input_x, seg=None, n=0, mode='progressive'):
        """
        A helper class for subspace visualization. Input and seg are different images.
        For the first n levels (including encoder) we use input, for the rest we use seg.

        If mode = 'progressive', the output's like: AAABBB
        If mode = 'one_plug', the output's like:    AAABAA
        If mode = 'one_ablate', the output's like:  BBBABB
        """

        if seg is None:
            return self.forward(input_x)

        if self.is_train:
            phase = self.train_phase + 1
        else:
            phase = len(self.to_rgbs)

        if mode == 'progressive':
            n = max(min(n, 4 + phase), 0)
            guide_list = [input_x] * n + [seg] * (4 + phase - n)
        elif mode == 'one_plug':
            n = max(min(n, 4 + phase - 1), 0)
            guide_list = [seg] * (4 + phase)
            guide_list[n] = input_x
        elif mode == 'one_ablate':
            if n > 3 + phase:
                return self.forward(input_x)
            guide_list = [input_x] * (4 + phase)
            guide_list[n] = seg

        x = self.encode(guide_list[0])
        x = self.head_0(x, guide_list[1])

        x = self.up(x)
        x = self.g_middle_0(x, guide_list[2])
        x = self.g_middle_1(x, guide_list[3])

        for i in range(phase):
            x = self.up(x)
            x = self.ups[i](x, guide_list[4 + i])

        x = self.to_rgbs[phase - 1](F.leaky_relu(x, 2e-1))
        x = torch.tanh(x)

        return x


@ARCH_REGISTRY.register()
class HiFaceGAN(SPADEGenerator):
    """
    HiFaceGAN: SPADEGenerator with a learnable feature encoder
    Current encoder design: LIPEncoder
    """

    def __init__(self,
                 num_in_ch=3,
                 num_feat=64,
                 use_vae=False,
                 z_dim=256,
                 crop_size=512,
                 norm_g='spectralspadesyncbatch3x3',
                 is_train=True,
                 init_train_phase=3):
        super().__init__(num_in_ch, num_feat, use_vae, z_dim, crop_size, norm_g, is_train, init_train_phase)
        self.lip_encoder = LIPEncoder(num_in_ch, num_feat, self.sw, self.sh, self.scale_ratio)

    def encode(self, input_tensor):
        return self.lip_encoder(input_tensor)


@ARCH_REGISTRY.register()
class HiFaceGANDiscriminator(BaseNetwork):
    """
    Inspired by pix2pixHD multiscale discriminator.

    Args:
        num_in_ch (int): Channel number of inputs. Default: 3.
        num_out_ch (int): Channel number of outputs. Default: 3.
        conditional_d (bool): Whether use conditional discriminator.
            Default: True.
        num_d (int): Number of Multiscale discriminators. Default: 3.
        n_layers_d (int): Number of downsample layers in each D. Default: 4.
        num_feat (int): Channel number of base intermediate features.
            Default: 64.
        norm_d (str): String to determine normalization layers in D.
            Choices: [spectral][instance/batch/syncbatch]
            Default: 'spectralinstance'.
        keep_features (bool): Keep intermediate features for matching loss, etc.
            Default: True.
    """

    def __init__(self,
                 num_in_ch=3,
                 num_out_ch=3,
                 conditional_d=True,
                 num_d=2,
                 n_layers_d=4,
                 num_feat=64,
                 norm_d='spectralinstance',
                 keep_features=True):
        super().__init__()
        self.num_d = num_d

        input_nc = num_in_ch
        if conditional_d:
            input_nc += num_out_ch

        for i in range(num_d):
            subnet_d = NLayerDiscriminator(input_nc, n_layers_d, num_feat, norm_d, keep_features)
            self.add_module(f'discriminator_{i}', subnet_d)

    def downsample(self, x):
        return F.avg_pool2d(x, kernel_size=3, stride=2, padding=[1, 1], count_include_pad=False)

    # Returns list of lists of discriminator outputs.
    # The final result is of size opt.num_d x opt.n_layers_D
    def forward(self, x):
        result = []
        for _, _net_d in self.named_children():
            out = _net_d(x)
            result.append(out)
            x = self.downsample(x)

        return result


class NLayerDiscriminator(BaseNetwork):
    """Defines the PatchGAN discriminator with the specified arguments."""

    def __init__(self, input_nc, n_layers_d, num_feat, norm_d, keep_features):
        super().__init__()
        kw = 4
        padw = int(np.ceil((kw - 1.0) / 2))
        nf = num_feat
        self.keep_features = keep_features

        norm_layer = get_nonspade_norm_layer(norm_d)
        sequence = [[nn.Conv2d(input_nc, nf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, False)]]

        for n in range(1, n_layers_d):
            nf_prev = nf
            nf = min(nf * 2, 512)
            stride = 1 if n == n_layers_d - 1 else 2
            sequence += [[
                norm_layer(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=stride, padding=padw)),
                nn.LeakyReLU(0.2, False)
            ]]

        sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]

        # We divide the layers into groups to extract intermediate layer outputs
        for n in range(len(sequence)):
            self.add_module('model' + str(n), nn.Sequential(*sequence[n]))

    def forward(self, x):
        results = [x]
        for submodel in self.children():
            intermediate_output = submodel(results[-1])
            results.append(intermediate_output)

        if self.keep_features:
            return results[1:]
        else:
            return results[-1]