Spaces:
Runtime error
Runtime error
import collections.abc | |
import math | |
import torch | |
import torchvision | |
import warnings | |
from distutils.version import LooseVersion | |
from itertools import repeat | |
from torch import nn as nn | |
from torch.nn import functional as F | |
from torch.nn import init as init | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv | |
from basicsr.utils import get_root_logger | |
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): | |
"""Initialize network weights. | |
Args: | |
module_list (list[nn.Module] | nn.Module): Modules to be initialized. | |
scale (float): Scale initialized weights, especially for residual | |
blocks. Default: 1. | |
bias_fill (float): The value to fill bias. Default: 0 | |
kwargs (dict): Other arguments for initialization function. | |
""" | |
if not isinstance(module_list, list): | |
module_list = [module_list] | |
for module in module_list: | |
for m in module.modules(): | |
if isinstance(m, nn.Conv2d): | |
init.kaiming_normal_(m.weight, **kwargs) | |
m.weight.data *= scale | |
if m.bias is not None: | |
m.bias.data.fill_(bias_fill) | |
elif isinstance(m, nn.Linear): | |
init.kaiming_normal_(m.weight, **kwargs) | |
m.weight.data *= scale | |
if m.bias is not None: | |
m.bias.data.fill_(bias_fill) | |
elif isinstance(m, _BatchNorm): | |
init.constant_(m.weight, 1) | |
if m.bias is not None: | |
m.bias.data.fill_(bias_fill) | |
def make_layer(basic_block, num_basic_block, **kwarg): | |
"""Make layers by stacking the same blocks. | |
Args: | |
basic_block (nn.module): nn.module class for basic block. | |
num_basic_block (int): number of blocks. | |
Returns: | |
nn.Sequential: Stacked blocks in nn.Sequential. | |
""" | |
layers = [] | |
for _ in range(num_basic_block): | |
layers.append(basic_block(**kwarg)) | |
return nn.Sequential(*layers) | |
class ResidualBlockNoBN(nn.Module): | |
"""Residual block without BN. | |
Args: | |
num_feat (int): Channel number of intermediate features. | |
Default: 64. | |
res_scale (float): Residual scale. Default: 1. | |
pytorch_init (bool): If set to True, use pytorch default init, | |
otherwise, use default_init_weights. Default: False. | |
""" | |
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False): | |
super(ResidualBlockNoBN, self).__init__() | |
self.res_scale = res_scale | |
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) | |
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) | |
self.relu = nn.ReLU(inplace=True) | |
if not pytorch_init: | |
default_init_weights([self.conv1, self.conv2], 0.1) | |
def forward(self, x): | |
identity = x | |
out = self.conv2(self.relu(self.conv1(x))) | |
return identity + out * self.res_scale | |
class Upsample(nn.Sequential): | |
"""Upsample module. | |
Args: | |
scale (int): Scale factor. Supported scales: 2^n and 3. | |
num_feat (int): Channel number of intermediate features. | |
""" | |
def __init__(self, scale, num_feat): | |
m = [] | |
if (scale & (scale - 1)) == 0: # scale = 2^n | |
for _ in range(int(math.log(scale, 2))): | |
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(2)) | |
elif scale == 3: | |
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(3)) | |
else: | |
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.') | |
super(Upsample, self).__init__(*m) | |
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True): | |
"""Warp an image or feature map with optical flow. | |
Args: | |
x (Tensor): Tensor with size (n, c, h, w). | |
flow (Tensor): Tensor with size (n, h, w, 2), normal value. | |
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'. | |
padding_mode (str): 'zeros' or 'border' or 'reflection'. | |
Default: 'zeros'. | |
align_corners (bool): Before pytorch 1.3, the default value is | |
align_corners=True. After pytorch 1.3, the default value is | |
align_corners=False. Here, we use the True as default. | |
Returns: | |
Tensor: Warped image or feature map. | |
""" | |
assert x.size()[-2:] == flow.size()[1:3] | |
_, _, h, w = x.size() | |
# create mesh grid | |
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x)) | |
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2 | |
grid.requires_grad = False | |
vgrid = grid + flow | |
# scale grid to [-1,1] | |
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0 | |
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0 | |
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3) | |
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners) | |
# TODO, what if align_corners=False | |
return output | |
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False): | |
"""Resize a flow according to ratio or shape. | |
Args: | |
flow (Tensor): Precomputed flow. shape [N, 2, H, W]. | |
size_type (str): 'ratio' or 'shape'. | |
sizes (list[int | float]): the ratio for resizing or the final output | |
shape. | |
1) The order of ratio should be [ratio_h, ratio_w]. For | |
downsampling, the ratio should be smaller than 1.0 (i.e., ratio | |
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e., | |
ratio > 1.0). | |
2) The order of output_size should be [out_h, out_w]. | |
interp_mode (str): The mode of interpolation for resizing. | |
Default: 'bilinear'. | |
align_corners (bool): Whether align corners. Default: False. | |
Returns: | |
Tensor: Resized flow. | |
""" | |
_, _, flow_h, flow_w = flow.size() | |
if size_type == 'ratio': | |
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1]) | |
elif size_type == 'shape': | |
output_h, output_w = sizes[0], sizes[1] | |
else: | |
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.') | |
input_flow = flow.clone() | |
ratio_h = output_h / flow_h | |
ratio_w = output_w / flow_w | |
input_flow[:, 0, :, :] *= ratio_w | |
input_flow[:, 1, :, :] *= ratio_h | |
resized_flow = F.interpolate( | |
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners) | |
return resized_flow | |
# TODO: may write a cpp file | |
def pixel_unshuffle(x, scale): | |
""" Pixel unshuffle. | |
Args: | |
x (Tensor): Input feature with shape (b, c, hh, hw). | |
scale (int): Downsample ratio. | |
Returns: | |
Tensor: the pixel unshuffled feature. | |
""" | |
b, c, hh, hw = x.size() | |
out_channel = c * (scale**2) | |
assert hh % scale == 0 and hw % scale == 0 | |
h = hh // scale | |
w = hw // scale | |
x_view = x.view(b, c, h, scale, w, scale) | |
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) | |
class DCNv2Pack(ModulatedDeformConvPack): | |
"""Modulated deformable conv for deformable alignment. | |
Different from the official DCNv2Pack, which generates offsets and masks | |
from the preceding features, this DCNv2Pack takes another different | |
features to generate offsets and masks. | |
``Paper: Delving Deep into Deformable Alignment in Video Super-Resolution`` | |
""" | |
def forward(self, x, feat): | |
out = self.conv_offset(feat) | |
o1, o2, mask = torch.chunk(out, 3, dim=1) | |
offset = torch.cat((o1, o2), dim=1) | |
mask = torch.sigmoid(mask) | |
offset_absmean = torch.mean(torch.abs(offset)) | |
if offset_absmean > 50: | |
logger = get_root_logger() | |
logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.') | |
if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'): | |
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, | |
self.dilation, mask) | |
else: | |
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, | |
self.dilation, self.groups, self.deformable_groups) | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' | |
'The distribution of values may be incorrect.', | |
stacklevel=2) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
low = norm_cdf((a - mean) / std) | |
up = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [low, up], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * low - 1, 2 * up - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. | |
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py | |
The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
# From PyTorch | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable): | |
return x | |
return tuple(repeat(x, n)) | |
return parse | |
to_1tuple = _ntuple(1) | |
to_2tuple = _ntuple(2) | |
to_3tuple = _ntuple(3) | |
to_4tuple = _ntuple(4) | |
to_ntuple = _ntuple | |