Spaces:
Runtime error
Runtime error
Create switch_app_multi_download.py
Browse files- switch_app_multi_download.py +491 -0
switch_app_multi_download.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from huggingface_hub import snapshot_download
|
8 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
9 |
+
from diffusers.utils import load_image
|
10 |
+
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
|
11 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
12 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
13 |
+
from kolors.models.controlnet import ControlNetModel
|
14 |
+
from diffusers import AutoencoderKL
|
15 |
+
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
16 |
+
from diffusers import EulerDiscreteScheduler
|
17 |
+
from PIL import Image
|
18 |
+
from annotator.midas import MidasDetector
|
19 |
+
from annotator.dwpose import DWposeDetector
|
20 |
+
from annotator.util import resize_image, HWC3
|
21 |
+
from zipfile import ZipFile
|
22 |
+
from uuid import uuid1
|
23 |
+
from PIL import Image
|
24 |
+
|
25 |
+
device = "cuda"
|
26 |
+
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
27 |
+
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
|
28 |
+
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
|
29 |
+
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
|
30 |
+
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")
|
31 |
+
'''
|
32 |
+
ckpt_dir = "Kolors"
|
33 |
+
ckpt_dir_depth = "Kolors-ControlNet-Depth"
|
34 |
+
ckpt_dir_canny = "Kolors-ControlNet-Canny"
|
35 |
+
ckpt_dir_ipa = "Kolors-IP-Adapter-Plus"
|
36 |
+
ckpt_dir_pose = "Kolors-ControlNet-Pose"
|
37 |
+
'''
|
38 |
+
|
39 |
+
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
40 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
41 |
+
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
42 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
43 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
44 |
+
|
45 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
|
46 |
+
ip_img_size = 336
|
47 |
+
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
|
48 |
+
|
49 |
+
model_midas = MidasDetector()
|
50 |
+
model_dwpose = DWposeDetector()
|
51 |
+
|
52 |
+
MAX_SEED = np.iinfo(np.int32).max
|
53 |
+
MAX_IMAGE_SIZE = 512
|
54 |
+
|
55 |
+
def process_canny_condition(image, canny_threods=[100, 200]):
|
56 |
+
np_image = image.copy()
|
57 |
+
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
|
58 |
+
np_image = np_image[:, :, None]
|
59 |
+
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
|
60 |
+
np_image = HWC3(np_image)
|
61 |
+
return Image.fromarray(np_image)
|
62 |
+
|
63 |
+
def process_depth_condition_midas(img, res=1024):
|
64 |
+
h, w, _ = img.shape
|
65 |
+
img = resize_image(HWC3(img), res)
|
66 |
+
result = HWC3(model_midas(img))
|
67 |
+
result = cv2.resize(result, (w, h))
|
68 |
+
return Image.fromarray(result)
|
69 |
+
|
70 |
+
def process_dwpose_condition(image, res=1024):
|
71 |
+
h, w, _ = image.shape
|
72 |
+
img = resize_image(HWC3(image), res)
|
73 |
+
out_res, out_img = model_dwpose(image)
|
74 |
+
result = HWC3(out_img)
|
75 |
+
result = cv2.resize(result, (w, h))
|
76 |
+
return Image.fromarray(result)
|
77 |
+
|
78 |
+
def infer_canny(prompt,
|
79 |
+
image=None,
|
80 |
+
ipa_img=None,
|
81 |
+
negative_prompt="nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผ็ณ็ณ็่งฃๅ็ปๆใ็ณ็ณ็ๆ๏ผ็ผบๅคฑๆๆใ่ดจ้ๆๅทฎใไฝ่ดจ้ใjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ",
|
82 |
+
seed=66,
|
83 |
+
randomize_seed=False,
|
84 |
+
guidance_scale=5.0,
|
85 |
+
num_inference_steps=50,
|
86 |
+
controlnet_conditioning_scale=0.5,
|
87 |
+
control_guidance_end=0.9,
|
88 |
+
strength=1.0,
|
89 |
+
ip_scale=0.5,
|
90 |
+
num_images=1):
|
91 |
+
if randomize_seed:
|
92 |
+
seed = random.randint(0, MAX_SEED)
|
93 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
94 |
+
pipe = pipe_canny.to("cuda")
|
95 |
+
pipe.set_ip_adapter_scale([ip_scale])
|
96 |
+
condi_img = process_canny_condition(np.array(init_image))
|
97 |
+
images = []
|
98 |
+
for i in range(num_images):
|
99 |
+
generator = torch.Generator().manual_seed(seed + i)
|
100 |
+
image = pipe(
|
101 |
+
prompt=prompt,
|
102 |
+
image=init_image,
|
103 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
104 |
+
control_guidance_end=control_guidance_end,
|
105 |
+
ip_adapter_image=[ipa_img],
|
106 |
+
strength=strength,
|
107 |
+
control_image=condi_img,
|
108 |
+
negative_prompt=negative_prompt,
|
109 |
+
num_inference_steps=num_inference_steps,
|
110 |
+
guidance_scale=guidance_scale,
|
111 |
+
num_images_per_prompt=1,
|
112 |
+
generator=generator,
|
113 |
+
).images[0]
|
114 |
+
images.append(image)
|
115 |
+
return [condi_img] + images, seed
|
116 |
+
|
117 |
+
def infer_depth(prompt,
|
118 |
+
image=None,
|
119 |
+
ipa_img=None,
|
120 |
+
negative_prompt="nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผ็ณ็ณ็่งฃๅ็ปๆใ็ณ็ณ็ๆ๏ผ็ผบๅคฑๆๆใ่ดจ้ๆๅทฎใไฝ่ดจ้ใjpegไผช๏ฟฝ๏ฟฝ๏ฟฝใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ",
|
121 |
+
seed=66,
|
122 |
+
randomize_seed=False,
|
123 |
+
guidance_scale=5.0,
|
124 |
+
num_inference_steps=50,
|
125 |
+
controlnet_conditioning_scale=0.5,
|
126 |
+
control_guidance_end=0.9,
|
127 |
+
strength=1.0,
|
128 |
+
ip_scale=0.5,
|
129 |
+
num_images=1):
|
130 |
+
if randomize_seed:
|
131 |
+
seed = random.randint(0, MAX_SEED)
|
132 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
133 |
+
pipe = pipe_depth.to("cuda")
|
134 |
+
pipe.set_ip_adapter_scale([ip_scale])
|
135 |
+
condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE)
|
136 |
+
images = []
|
137 |
+
for i in range(num_images):
|
138 |
+
generator = torch.Generator().manual_seed(seed + i)
|
139 |
+
image = pipe(
|
140 |
+
prompt=prompt,
|
141 |
+
image=init_image,
|
142 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
143 |
+
control_guidance_end=control_guidance_end,
|
144 |
+
ip_adapter_image=[ipa_img],
|
145 |
+
strength=strength,
|
146 |
+
control_image=condi_img,
|
147 |
+
negative_prompt=negative_prompt,
|
148 |
+
num_inference_steps=num_inference_steps,
|
149 |
+
guidance_scale=guidance_scale,
|
150 |
+
num_images_per_prompt=1,
|
151 |
+
generator=generator,
|
152 |
+
).images[0]
|
153 |
+
images.append(image)
|
154 |
+
return [condi_img] + images, seed
|
155 |
+
|
156 |
+
def infer_pose(prompt,
|
157 |
+
image=None,
|
158 |
+
ipa_img=None,
|
159 |
+
negative_prompt="nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ",
|
160 |
+
seed=66,
|
161 |
+
randomize_seed=False,
|
162 |
+
guidance_scale=5.0,
|
163 |
+
num_inference_steps=50,
|
164 |
+
controlnet_conditioning_scale=0.5,
|
165 |
+
control_guidance_end=0.9,
|
166 |
+
strength=1.0,
|
167 |
+
ip_scale=0.5,
|
168 |
+
num_images=1):
|
169 |
+
if randomize_seed:
|
170 |
+
seed = random.randint(0, MAX_SEED)
|
171 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
172 |
+
pipe = pipe_pose.to("cuda")
|
173 |
+
pipe.set_ip_adapter_scale([ip_scale])
|
174 |
+
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
|
175 |
+
images = []
|
176 |
+
for i in range(num_images):
|
177 |
+
generator = torch.Generator().manual_seed(seed + i)
|
178 |
+
image = pipe(
|
179 |
+
prompt=prompt,
|
180 |
+
image=init_image,
|
181 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
182 |
+
control_guidance_end=control_guidance_end,
|
183 |
+
ip_adapter_image=[ipa_img],
|
184 |
+
strength=strength,
|
185 |
+
control_image=condi_img,
|
186 |
+
negative_prompt=negative_prompt,
|
187 |
+
num_inference_steps=num_inference_steps,
|
188 |
+
guidance_scale=guidance_scale,
|
189 |
+
num_images_per_prompt=1,
|
190 |
+
generator=generator,
|
191 |
+
).images[0]
|
192 |
+
images.append(image)
|
193 |
+
return [condi_img] + images, seed
|
194 |
+
|
195 |
+
canny_examples = [
|
196 |
+
["ไธไธช็บข่ฒๅคดๅ็ๅฅณๅญฉ๏ผๅฏ็พ้ฃๆฏ๏ผๆธ
ๆฐๆไบฎ๏ผๆ้ฉณ็ๅ
ๅฝฑ๏ผๆๅฅฝ็่ดจ้๏ผ่ถ
็ป่๏ผ8K็ป่ดจ",
|
197 |
+
"image/woman_2.png", "image/2.png", 3],
|
198 |
+
]
|
199 |
+
|
200 |
+
depth_examples = [
|
201 |
+
["ไธไธชๆผไบฎ็ๅฅณๅญฉ๏ผๆๅฅฝ็่ดจ้๏ผ่ถ
็ป่๏ผ8K็ป่ดจ",
|
202 |
+
"image/1.png", "image/woman_1.png", 3],
|
203 |
+
]
|
204 |
+
|
205 |
+
pose_examples = [
|
206 |
+
["ไธไฝ็ฉฟ็็ดซ่ฒๆณกๆณก่ข่ฟ่กฃ่ฃใๆด็็ๅ ๅ็ฝ่ฒ่พไธๆๅฅ็ๅฅณๅญฉ๏ผ่ถ
้ซๅ่พจ็๏ผๆไฝณๅ่ดจ๏ผ8k็ป่ดจ",
|
207 |
+
"image/woman_3.png", "image/woman_4.png", 3],
|
208 |
+
]
|
209 |
+
|
210 |
+
css = """
|
211 |
+
#col-left {
|
212 |
+
margin: 0 auto;
|
213 |
+
max-width: 600px;
|
214 |
+
}
|
215 |
+
#col-right {
|
216 |
+
margin: 0 auto;
|
217 |
+
max-width: 750px;
|
218 |
+
}
|
219 |
+
#button {
|
220 |
+
color: blue;
|
221 |
+
}
|
222 |
+
"""
|
223 |
+
|
224 |
+
def load_description(fp):
|
225 |
+
with open(fp, 'r', encoding='utf-8') as f:
|
226 |
+
content = f.read()
|
227 |
+
return content
|
228 |
+
|
229 |
+
def clear_resources():
|
230 |
+
global pipe_canny, pipe_depth, pipe_pose
|
231 |
+
if 'pipe_canny' in globals():
|
232 |
+
del pipe_canny
|
233 |
+
if 'pipe_depth' in globals():
|
234 |
+
del pipe_depth
|
235 |
+
if 'pipe_pose' in globals():
|
236 |
+
del pipe_pose
|
237 |
+
torch.cuda.empty_cache()
|
238 |
+
|
239 |
+
def load_canny_pipeline():
|
240 |
+
global pipe_canny
|
241 |
+
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
|
242 |
+
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
|
243 |
+
vae=vae,
|
244 |
+
controlnet=controlnet_canny,
|
245 |
+
text_encoder=text_encoder,
|
246 |
+
tokenizer=tokenizer,
|
247 |
+
unet=unet,
|
248 |
+
scheduler=scheduler,
|
249 |
+
image_encoder=image_encoder,
|
250 |
+
feature_extractor=clip_image_processor,
|
251 |
+
force_zeros_for_empty_prompt=False
|
252 |
+
)
|
253 |
+
pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
|
254 |
+
|
255 |
+
def load_depth_pipeline():
|
256 |
+
global pipe_depth
|
257 |
+
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
|
258 |
+
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
|
259 |
+
vae=vae,
|
260 |
+
controlnet=controlnet_depth,
|
261 |
+
text_encoder=text_encoder,
|
262 |
+
tokenizer=tokenizer,
|
263 |
+
unet=unet,
|
264 |
+
scheduler=scheduler,
|
265 |
+
image_encoder=image_encoder,
|
266 |
+
feature_extractor=clip_image_processor,
|
267 |
+
force_zeros_for_empty_prompt=False
|
268 |
+
)
|
269 |
+
pipe_depth.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
|
270 |
+
|
271 |
+
def load_pose_pipeline():
|
272 |
+
global pipe_pose
|
273 |
+
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
|
274 |
+
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
|
275 |
+
vae=vae,
|
276 |
+
controlnet=controlnet_pose,
|
277 |
+
text_encoder=text_encoder,
|
278 |
+
tokenizer=tokenizer,
|
279 |
+
unet=unet,
|
280 |
+
scheduler=scheduler,
|
281 |
+
image_encoder=image_encoder,
|
282 |
+
feature_extractor=clip_image_processor,
|
283 |
+
force_zeros_for_empty_prompt=False
|
284 |
+
)
|
285 |
+
pipe_pose.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
|
286 |
+
|
287 |
+
def switch_to_canny():
|
288 |
+
clear_resources()
|
289 |
+
load_canny_pipeline()
|
290 |
+
return gr.update(visible=True)
|
291 |
+
|
292 |
+
def switch_to_depth():
|
293 |
+
clear_resources()
|
294 |
+
load_depth_pipeline()
|
295 |
+
return gr.update(visible=True)
|
296 |
+
|
297 |
+
def switch_to_pose():
|
298 |
+
clear_resources()
|
299 |
+
load_pose_pipeline()
|
300 |
+
return gr.update(visible=True)
|
301 |
+
|
302 |
+
def zip_images(gallery, zip_name):
|
303 |
+
if gallery is None or len(gallery) == 0:
|
304 |
+
return None
|
305 |
+
|
306 |
+
if not zip_name:
|
307 |
+
zip_name = "generated_images.zip"
|
308 |
+
|
309 |
+
with ZipFile(zip_name, "w") as zipObj:
|
310 |
+
for i, image in enumerate(gallery):
|
311 |
+
temp_file = f"temp_{i}.png"
|
312 |
+
Image.open(image[0]).save(temp_file)
|
313 |
+
#image.save(temp_file)
|
314 |
+
zipObj.write(temp_file, f"image_{i}.png")
|
315 |
+
os.remove(temp_file)
|
316 |
+
|
317 |
+
return zip_name
|
318 |
+
|
319 |
+
def update_zip_name(ipa_image_file):
|
320 |
+
#print(ipa_image_file)
|
321 |
+
if ipa_image_file is not None and type(ipa_image_file) == type(""):
|
322 |
+
name = ipa_image_file.split("/")[-1].split('.')[0]
|
323 |
+
return "{}_generated_images.zip".format(name)
|
324 |
+
return "generated_images.zip"
|
325 |
+
|
326 |
+
with gr.Blocks(css=css) as Kolors:
|
327 |
+
gr.HTML(load_description("assets/title.md"))
|
328 |
+
with gr.Row():
|
329 |
+
with gr.Column(elem_id="col-left"):
|
330 |
+
with gr.Row():
|
331 |
+
prompt = gr.Textbox(
|
332 |
+
label="Prompt",
|
333 |
+
placeholder="Enter your prompt",
|
334 |
+
lines=2
|
335 |
+
)
|
336 |
+
with gr.Row():
|
337 |
+
image = gr.Image(label="Image", type="pil")
|
338 |
+
#ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
|
339 |
+
ipa_image = gr.Image(type="pil", visible = False)
|
340 |
+
ipa_image_file = gr.Image(type = "filepath", label="IP-Adapter-Image")
|
341 |
+
with gr.Row():
|
342 |
+
num_images = gr.Slider(
|
343 |
+
label="Number of Images",
|
344 |
+
minimum=1,
|
345 |
+
maximum=10,
|
346 |
+
step=1,
|
347 |
+
value=1,
|
348 |
+
)
|
349 |
+
with gr.Accordion("Advanced Settings", open=False):
|
350 |
+
negative_prompt = gr.Textbox(
|
351 |
+
label="Negative prompt",
|
352 |
+
placeholder="Enter a negative prompt",
|
353 |
+
visible=True,
|
354 |
+
value="nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผ็ณ็ณ็่งฃๅ็ปๆใ็ณ็ณ็ๆ๏ผ็ผบๅคฑๆๆใ่ดจ้ๆๅทฎใไฝ่ดจ้ใjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ"
|
355 |
+
)
|
356 |
+
seed = gr.Slider(
|
357 |
+
label="Seed",
|
358 |
+
minimum=0,
|
359 |
+
maximum=MAX_SEED,
|
360 |
+
step=1,
|
361 |
+
value=0,
|
362 |
+
)
|
363 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
364 |
+
with gr.Row():
|
365 |
+
guidance_scale = gr.Slider(
|
366 |
+
label="Guidance scale",
|
367 |
+
minimum=0.0,
|
368 |
+
maximum=10.0,
|
369 |
+
step=0.1,
|
370 |
+
value=5.0,
|
371 |
+
)
|
372 |
+
num_inference_steps = gr.Slider(
|
373 |
+
label="Number of inference steps",
|
374 |
+
minimum=10,
|
375 |
+
maximum=50,
|
376 |
+
step=1,
|
377 |
+
value=30,
|
378 |
+
)
|
379 |
+
with gr.Row():
|
380 |
+
controlnet_conditioning_scale = gr.Slider(
|
381 |
+
label="Controlnet Conditioning Scale",
|
382 |
+
minimum=0.0,
|
383 |
+
maximum=1.0,
|
384 |
+
step=0.1,
|
385 |
+
value=0.5,
|
386 |
+
)
|
387 |
+
control_guidance_end = gr.Slider(
|
388 |
+
label="Control Guidance End",
|
389 |
+
minimum=0.0,
|
390 |
+
maximum=1.0,
|
391 |
+
step=0.1,
|
392 |
+
value=0.9,
|
393 |
+
)
|
394 |
+
with gr.Row():
|
395 |
+
strength = gr.Slider(
|
396 |
+
label="Strength",
|
397 |
+
minimum=0.0,
|
398 |
+
maximum=1.0,
|
399 |
+
step=0.1,
|
400 |
+
value=1.0,
|
401 |
+
)
|
402 |
+
ip_scale = gr.Slider(
|
403 |
+
label="IP_Scale",
|
404 |
+
minimum=0.0,
|
405 |
+
maximum=1.0,
|
406 |
+
step=0.1,
|
407 |
+
value=0.5,
|
408 |
+
)
|
409 |
+
with gr.Row():
|
410 |
+
canny_button = gr.Button("Canny", elem_id="button")
|
411 |
+
depth_button = gr.Button("Depth", elem_id="button")
|
412 |
+
pose_button = gr.Button("Pose", elem_id="button")
|
413 |
+
|
414 |
+
with gr.Column(elem_id="col-right"):
|
415 |
+
result = gr.Gallery(label="Result", show_label=False, columns=3)
|
416 |
+
seed_used = gr.Number(label="Seed Used")
|
417 |
+
zip_name = gr.Textbox(label="Zip File Name", value="generated_images.zip")
|
418 |
+
zip_button = gr.Button("Zip Images as Zip", elem_id="button")
|
419 |
+
download_file = gr.File(label="Download Zip File of Image")
|
420 |
+
|
421 |
+
with gr.Row():
|
422 |
+
gr.Examples(
|
423 |
+
fn=infer_canny,
|
424 |
+
examples=canny_examples,
|
425 |
+
inputs=[prompt, image, ipa_image_file, num_images],
|
426 |
+
outputs=[result, seed_used],
|
427 |
+
label="Canny"
|
428 |
+
)
|
429 |
+
with gr.Row():
|
430 |
+
gr.Examples(
|
431 |
+
fn=infer_depth,
|
432 |
+
examples=depth_examples,
|
433 |
+
inputs=[prompt, image, ipa_image_file, num_images],
|
434 |
+
outputs=[result, seed_used],
|
435 |
+
label="Depth"
|
436 |
+
)
|
437 |
+
with gr.Row():
|
438 |
+
gr.Examples(
|
439 |
+
fn=infer_pose,
|
440 |
+
examples=pose_examples,
|
441 |
+
inputs=[prompt, image, ipa_image_file, num_images],
|
442 |
+
outputs=[result, seed_used],
|
443 |
+
label="Pose"
|
444 |
+
)
|
445 |
+
|
446 |
+
canny_button.click(
|
447 |
+
fn=switch_to_canny,
|
448 |
+
outputs=[canny_button]
|
449 |
+
).then(
|
450 |
+
fn=infer_canny,
|
451 |
+
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
|
452 |
+
outputs=[result, seed_used]
|
453 |
+
)
|
454 |
+
|
455 |
+
depth_button.click(
|
456 |
+
fn=switch_to_depth,
|
457 |
+
outputs=[depth_button]
|
458 |
+
).then(
|
459 |
+
fn=infer_depth,
|
460 |
+
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
|
461 |
+
outputs=[result, seed_used]
|
462 |
+
)
|
463 |
+
|
464 |
+
pose_button.click(
|
465 |
+
fn=switch_to_pose,
|
466 |
+
outputs=[pose_button]
|
467 |
+
).then(
|
468 |
+
fn=infer_pose,
|
469 |
+
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
|
470 |
+
outputs=[result, seed_used]
|
471 |
+
)
|
472 |
+
|
473 |
+
ipa_image_file.change(
|
474 |
+
fn = lambda x: Image.open(x),
|
475 |
+
inputs = [ipa_image_file],
|
476 |
+
outputs = [ipa_image]
|
477 |
+
)
|
478 |
+
|
479 |
+
ipa_image_file.change(
|
480 |
+
fn=update_zip_name,
|
481 |
+
inputs=[ipa_image_file],
|
482 |
+
outputs=[zip_name]
|
483 |
+
)
|
484 |
+
|
485 |
+
zip_button.click(
|
486 |
+
fn=zip_images,
|
487 |
+
inputs=[result, zip_name],
|
488 |
+
outputs=download_file
|
489 |
+
)
|
490 |
+
|
491 |
+
Kolors.queue().launch(debug=True, share=True)
|