Spaces:
Running
Running
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py | |
import math | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from torch import nn | |
def get_timestep_embedding( | |
timesteps: torch.Tensor, | |
embedding_dim: int, | |
flip_sin_to_cos: bool = False, | |
downscale_freq_shift: float = 1, | |
scale: float = 1, | |
max_period: int = 10000, | |
): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the | |
embeddings. :return: an [N x dim] Tensor of positional embeddings. | |
""" | |
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" | |
half_dim = embedding_dim // 2 | |
exponent = -math.log(max_period) * torch.arange( | |
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device | |
) | |
exponent = exponent / (half_dim - downscale_freq_shift) | |
emb = torch.exp(exponent) | |
emb = timesteps[:, None].float() * emb[None, :] | |
# scale embeddings | |
emb = scale * emb | |
# concat sine and cosine embeddings | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) | |
# flip sine and cosine embeddings | |
if flip_sin_to_cos: | |
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) | |
# zero pad | |
if embedding_dim % 2 == 1: | |
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
return emb | |
def get_3d_sincos_pos_embed(embed_dim, grid, w, h, f): | |
""" | |
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or | |
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
grid = rearrange(grid, "c (f h w) -> c f h w", h=h, w=w) | |
grid = rearrange(grid, "c f h w -> c h w f", h=h, w=w) | |
grid = grid.reshape([3, 1, w, h, f]) | |
pos_embed = get_3d_sincos_pos_embed_from_grid(embed_dim, grid) | |
pos_embed = pos_embed.transpose(1, 0, 2, 3) | |
return rearrange(pos_embed, "h w f c -> (f h w) c") | |
def get_3d_sincos_pos_embed_from_grid(embed_dim, grid): | |
if embed_dim % 3 != 0: | |
raise ValueError("embed_dim must be divisible by 3") | |
# use half of dimensions to encode grid_h | |
emb_f = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[0]) # (H*W*T, D/3) | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[1]) # (H*W*T, D/3) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[2]) # (H*W*T, D/3) | |
emb = np.concatenate([emb_h, emb_w, emb_f], axis=-1) # (H*W*T, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) | |
""" | |
if embed_dim % 2 != 0: | |
raise ValueError("embed_dim must be divisible by 2") | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos_shape = pos.shape | |
pos = pos.reshape(-1) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
out = out.reshape([*pos_shape, -1])[0] | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (M, D) | |
return emb | |
class SinusoidalPositionalEmbedding(nn.Module): | |
"""Apply positional information to a sequence of embeddings. | |
Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to | |
them | |
Args: | |
embed_dim: (int): Dimension of the positional embedding. | |
max_seq_length: Maximum sequence length to apply positional embeddings | |
""" | |
def __init__(self, embed_dim: int, max_seq_length: int = 32): | |
super().__init__() | |
position = torch.arange(max_seq_length).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim) | |
) | |
pe = torch.zeros(1, max_seq_length, embed_dim) | |
pe[0, :, 0::2] = torch.sin(position * div_term) | |
pe[0, :, 1::2] = torch.cos(position * div_term) | |
self.register_buffer("pe", pe) | |
def forward(self, x): | |
_, seq_length, _ = x.shape | |
x = x + self.pe[:, :seq_length] | |
return x | |