Spaces:
Running
Running
Remove the word "pixart" from code.
Browse files
xora/examples/image_to_video.py
CHANGED
@@ -3,7 +3,7 @@ from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoenc
|
|
3 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
4 |
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
-
from xora.pipelines.
|
7 |
from pathlib import Path
|
8 |
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
import safetensors.torch
|
@@ -180,7 +180,7 @@ def main():
|
|
180 |
"vae": vae,
|
181 |
}
|
182 |
|
183 |
-
pipeline =
|
184 |
|
185 |
# Load media (video or image)
|
186 |
if args.video_path:
|
|
|
3 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
4 |
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
+
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
|
7 |
from pathlib import Path
|
8 |
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
import safetensors.torch
|
|
|
180 |
"vae": vae,
|
181 |
}
|
182 |
|
183 |
+
pipeline = XoraVideoPipeline(**submodel_dict).to("cuda")
|
184 |
|
185 |
# Load media (video or image)
|
186 |
if args.video_path:
|
xora/examples/text_to_video.py
CHANGED
@@ -3,7 +3,7 @@ from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoenc
|
|
3 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
4 |
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
-
from xora.pipelines.
|
7 |
from pathlib import Path
|
8 |
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
import safetensors.torch
|
@@ -82,7 +82,7 @@ def main():
|
|
82 |
"vae": vae,
|
83 |
}
|
84 |
|
85 |
-
pipeline =
|
86 |
|
87 |
# Sample input
|
88 |
num_inference_steps = 20
|
|
|
3 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
4 |
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
+
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
|
7 |
from pathlib import Path
|
8 |
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
import safetensors.torch
|
|
|
82 |
"vae": vae,
|
83 |
}
|
84 |
|
85 |
+
pipeline = XoraVideoPipeline(**submodel_dict).to("cuda")
|
86 |
|
87 |
# Sample input
|
88 |
num_inference_steps = 20
|
xora/models/transformers/symmetric_patchifier.py
CHANGED
@@ -60,26 +60,19 @@ class Patchifier(ConfigMixin, ABC):
|
|
60 |
return grid
|
61 |
|
62 |
|
63 |
-
def pixart_alpha_patchify(
|
64 |
-
latents: Tensor,
|
65 |
-
patch_size: int,
|
66 |
-
) -> Tuple[Tensor, Tensor]:
|
67 |
-
latents = rearrange(
|
68 |
-
latents,
|
69 |
-
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
|
70 |
-
p1=patch_size[0],
|
71 |
-
p2=patch_size[1],
|
72 |
-
p3=patch_size[2],
|
73 |
-
)
|
74 |
-
return latents
|
75 |
-
|
76 |
-
|
77 |
class SymmetricPatchifier(Patchifier):
|
78 |
def patchify(
|
79 |
self,
|
80 |
latents: Tensor,
|
81 |
) -> Tuple[Tensor, Tensor]:
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
def unpatchify(
|
85 |
self,
|
|
|
60 |
return grid
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
class SymmetricPatchifier(Patchifier):
|
64 |
def patchify(
|
65 |
self,
|
66 |
latents: Tensor,
|
67 |
) -> Tuple[Tensor, Tensor]:
|
68 |
+
latents = rearrange(
|
69 |
+
latents,
|
70 |
+
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
|
71 |
+
p1=self._patch_size[0],
|
72 |
+
p2=self._patch_size[1],
|
73 |
+
p3=self._patch_size[2],
|
74 |
+
)
|
75 |
+
return latents
|
76 |
|
77 |
def unpatchify(
|
78 |
self,
|
xora/models/transformers/transformer3d.py
CHANGED
@@ -141,12 +141,10 @@ class Transformer3DModel(ModelMixin, ConfigMixin):
|
|
141 |
)
|
142 |
self.proj_out = nn.Linear(inner_dim, self.out_channels)
|
143 |
|
144 |
-
# 5. PixArt-Alpha blocks.
|
145 |
self.adaln_single = AdaLayerNormSingle(
|
146 |
inner_dim, use_additional_conditions=False
|
147 |
)
|
148 |
if adaptive_norm == "single_scale":
|
149 |
-
# Use 4 channels instead of the 6 for the PixArt-Alpha scale + shift ada norm.
|
150 |
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)
|
151 |
|
152 |
self.caption_projection = None
|
@@ -170,7 +168,7 @@ class Transformer3DModel(ModelMixin, ConfigMixin):
|
|
170 |
for block in self.transformer_blocks:
|
171 |
block.set_use_tpu_flash_attention(self.device.type)
|
172 |
|
173 |
-
def initialize(self, embedding_std: float, mode: Literal["xora", "
|
174 |
def _basic_init(module):
|
175 |
if isinstance(module, nn.Linear):
|
176 |
torch.nn.init.xavier_uniform_(module.weight)
|
@@ -211,7 +209,6 @@ class Transformer3DModel(ModelMixin, ConfigMixin):
|
|
211 |
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)
|
212 |
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)
|
213 |
|
214 |
-
# Zero-out adaLN modulation layers in PixArt blocks:
|
215 |
for block in self.transformer_blocks:
|
216 |
if mode.lower() == "xora":
|
217 |
nn.init.constant_(block.attn1.to_out[0].weight, 0)
|
|
|
141 |
)
|
142 |
self.proj_out = nn.Linear(inner_dim, self.out_channels)
|
143 |
|
|
|
144 |
self.adaln_single = AdaLayerNormSingle(
|
145 |
inner_dim, use_additional_conditions=False
|
146 |
)
|
147 |
if adaptive_norm == "single_scale":
|
|
|
148 |
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)
|
149 |
|
150 |
self.caption_projection = None
|
|
|
168 |
for block in self.transformer_blocks:
|
169 |
block.set_use_tpu_flash_attention(self.device.type)
|
170 |
|
171 |
+
def initialize(self, embedding_std: float, mode: Literal["xora", "legacy"]):
|
172 |
def _basic_init(module):
|
173 |
if isinstance(module, nn.Linear):
|
174 |
torch.nn.init.xavier_uniform_(module.weight)
|
|
|
209 |
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)
|
210 |
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)
|
211 |
|
|
|
212 |
for block in self.transformer_blocks:
|
213 |
if mode.lower() == "xora":
|
214 |
nn.init.constant_(block.attn1.to_out[0].weight, 0)
|
xora/pipelines/{pipeline_video_pixart_alpha.py → pipeline_xora_video.py}
RENAMED
@@ -1,4 +1,4 @@
|
|
1 |
-
#
|
2 |
import html
|
3 |
import inspect
|
4 |
import math
|
@@ -19,7 +19,6 @@ from diffusers.utils import (
|
|
19 |
is_bs4_available,
|
20 |
is_ftfy_available,
|
21 |
logging,
|
22 |
-
replace_example_docstring,
|
23 |
)
|
24 |
from diffusers.utils.torch_utils import randn_tensor
|
25 |
from einops import rearrange
|
@@ -44,22 +43,6 @@ if is_bs4_available():
|
|
44 |
if is_ftfy_available():
|
45 |
import ftfy
|
46 |
|
47 |
-
EXAMPLE_DOC_STRING = """
|
48 |
-
Examples:
|
49 |
-
```py
|
50 |
-
>>> import torch
|
51 |
-
>>> from diffusers import PixArtAlphaPipeline
|
52 |
-
|
53 |
-
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-XL-2-512x512" too.
|
54 |
-
>>> pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16)
|
55 |
-
>>> # Enable memory optimizations.
|
56 |
-
>>> pipe.enable_model_cpu_offload()
|
57 |
-
|
58 |
-
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
59 |
-
>>> image = pipe(prompt).images[0]
|
60 |
-
```
|
61 |
-
"""
|
62 |
-
|
63 |
ASPECT_RATIO_1024_BIN = {
|
64 |
"0.25": [512.0, 2048.0],
|
65 |
"0.28": [512.0, 1856.0],
|
@@ -180,9 +163,9 @@ def retrieve_timesteps(
|
|
180 |
return timesteps, num_inference_steps
|
181 |
|
182 |
|
183 |
-
class
|
184 |
r"""
|
185 |
-
Pipeline for text-to-image generation using
|
186 |
|
187 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
188 |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
@@ -191,7 +174,7 @@ class VideoPixArtAlphaPipeline(DiffusionPipeline):
|
|
191 |
vae ([`AutoencoderKL`]):
|
192 |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
193 |
text_encoder ([`T5EncoderModel`]):
|
194 |
-
Frozen text-encoder.
|
195 |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
196 |
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
197 |
tokenizer (`T5Tokenizer`):
|
@@ -247,7 +230,6 @@ class VideoPixArtAlphaPipeline(DiffusionPipeline):
|
|
247 |
)
|
248 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
249 |
|
250 |
-
# Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
|
251 |
def mask_text_embeddings(self, emb, mask):
|
252 |
if emb.shape[0] == 1:
|
253 |
keep_index = mask.sum().item()
|
@@ -280,7 +262,7 @@ class VideoPixArtAlphaPipeline(DiffusionPipeline):
|
|
280 |
negative_prompt (`str` or `List[str]`, *optional*):
|
281 |
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
282 |
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
283 |
-
|
284 |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
285 |
whether to use classifier free guidance or not
|
286 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
@@ -291,8 +273,7 @@ class VideoPixArtAlphaPipeline(DiffusionPipeline):
|
|
291 |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
292 |
provided, text embeddings will be generated from `prompt` input argument.
|
293 |
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
294 |
-
Pre-generated negative text embeddings.
|
295 |
-
string.
|
296 |
clean_caption (bool, defaults to `False`):
|
297 |
If `True`, the function will preprocess and clean the provided caption before encoding.
|
298 |
"""
|
@@ -753,7 +734,6 @@ class VideoPixArtAlphaPipeline(DiffusionPipeline):
|
|
753 |
return samples
|
754 |
|
755 |
@torch.no_grad()
|
756 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
757 |
def __call__(
|
758 |
self,
|
759 |
height: int,
|
@@ -824,7 +804,7 @@ class VideoPixArtAlphaPipeline(DiffusionPipeline):
|
|
824 |
provided, text embeddings will be generated from `prompt` input argument.
|
825 |
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
826 |
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
827 |
-
Pre-generated negative text embeddings.
|
828 |
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
829 |
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
830 |
Pre-generated attention mask for negative text embeddings.
|
|
|
1 |
+
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
|
2 |
import html
|
3 |
import inspect
|
4 |
import math
|
|
|
19 |
is_bs4_available,
|
20 |
is_ftfy_available,
|
21 |
logging,
|
|
|
22 |
)
|
23 |
from diffusers.utils.torch_utils import randn_tensor
|
24 |
from einops import rearrange
|
|
|
43 |
if is_ftfy_available():
|
44 |
import ftfy
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
ASPECT_RATIO_1024_BIN = {
|
47 |
"0.25": [512.0, 2048.0],
|
48 |
"0.28": [512.0, 1856.0],
|
|
|
163 |
return timesteps, num_inference_steps
|
164 |
|
165 |
|
166 |
+
class XoraVideoPipeline(DiffusionPipeline):
|
167 |
r"""
|
168 |
+
Pipeline for text-to-image generation using Xora.
|
169 |
|
170 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
171 |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
174 |
vae ([`AutoencoderKL`]):
|
175 |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
176 |
text_encoder ([`T5EncoderModel`]):
|
177 |
+
Frozen text-encoder. This uses
|
178 |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
179 |
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
180 |
tokenizer (`T5Tokenizer`):
|
|
|
230 |
)
|
231 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
232 |
|
|
|
233 |
def mask_text_embeddings(self, emb, mask):
|
234 |
if emb.shape[0] == 1:
|
235 |
keep_index = mask.sum().item()
|
|
|
262 |
negative_prompt (`str` or `List[str]`, *optional*):
|
263 |
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
264 |
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
265 |
+
This should be "".
|
266 |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
267 |
whether to use classifier free guidance or not
|
268 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
273 |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
274 |
provided, text embeddings will be generated from `prompt` input argument.
|
275 |
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
276 |
+
Pre-generated negative text embeddings.
|
|
|
277 |
clean_caption (bool, defaults to `False`):
|
278 |
If `True`, the function will preprocess and clean the provided caption before encoding.
|
279 |
"""
|
|
|
734 |
return samples
|
735 |
|
736 |
@torch.no_grad()
|
|
|
737 |
def __call__(
|
738 |
self,
|
739 |
height: int,
|
|
|
804 |
provided, text embeddings will be generated from `prompt` input argument.
|
805 |
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
806 |
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
807 |
+
Pre-generated negative text embeddings. This negative prompt should be "". If not
|
808 |
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
809 |
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
810 |
Pre-generated attention mask for negative text embeddings.
|