# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py import math import numpy as np import torch from einops import rearrange from torch import nn def get_timestep_embedding( timesteps: torch.Tensor, embedding_dim: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 exponent = -math.log(max_period) * torch.arange( start=0, end=half_dim, dtype=torch.float32, device=timesteps.device ) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] # scale embeddings emb = scale * emb # concat sine and cosine embeddings emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) # flip sine and cosine embeddings if flip_sin_to_cos: emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb def get_3d_sincos_pos_embed(embed_dim, grid, w, h, f): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid = rearrange(grid, "c (f h w) -> c f h w", h=h, w=w) grid = rearrange(grid, "c f h w -> c h w f", h=h, w=w) grid = grid.reshape([3, 1, w, h, f]) pos_embed = get_3d_sincos_pos_embed_from_grid(embed_dim, grid) pos_embed = pos_embed.transpose(1, 0, 2, 3) return rearrange(pos_embed, "h w f c -> (f h w) c") def get_3d_sincos_pos_embed_from_grid(embed_dim, grid): if embed_dim % 3 != 0: raise ValueError("embed_dim must be divisible by 3") # use half of dimensions to encode grid_h emb_f = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[0]) # (H*W*T, D/3) emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[1]) # (H*W*T, D/3) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[2]) # (H*W*T, D/3) emb = np.concatenate([emb_h, emb_w, emb_f], axis=-1) # (H*W*T, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be divisible by 2") omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos_shape = pos.shape pos = pos.reshape(-1) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product out = out.reshape([*pos_shape, -1])[0] emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (M, D) return emb class SinusoidalPositionalEmbedding(nn.Module): """Apply positional information to a sequence of embeddings. Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to them Args: embed_dim: (int): Dimension of the positional embedding. max_seq_length: Maximum sequence length to apply positional embeddings """ def __init__(self, embed_dim: int, max_seq_length: int = 32): super().__init__() position = torch.arange(max_seq_length).unsqueeze(1) div_term = torch.exp( torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim) ) pe = torch.zeros(1, max_seq_length, embed_dim) pe[0, :, 0::2] = torch.sin(position * div_term) pe[0, :, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x): _, seq_length, _ = x.shape x = x + self.pe[:, :seq_length] return x