import os import shutil from pathlib import Path ''' os.system("pip install -U huggingface_hub") os.system("pip install -U diffusers") if os.path.exists("wuerstchen"): shutil.rmtree("wuerstchen") os.system("git clone https://huggingface.co/warp-ai/wuerstchen") if os.path.exists("wuerstchen/.git"): shutil.rmtree("wuerstchen/.git") ''' import sys import gradio as gr import numpy as np import torch import random from diffusers import AutoPipelineForText2Image from diffusers.pipelines.wuerstchen.pipeline_wuerstchen_prior import DEFAULT_STAGE_C_TIMESTEPS device = 'cuda' if torch.cuda.is_available() else 'cpu' ''' assert os.path.exists("wuerstchen") pipe = AutoPipelineForText2Image.from_pretrained(Path("wuerstchen"), local_files_only = True, torch_dtype=torch.float32) ''' pipe = AutoPipelineForText2Image.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.float32) pipe.to(device) pipe.safety_checker = None ''' #### 9min a sample (2 cores) caption = "Anthropomorphic cat dressed as a fire fighter" images = pipe( caption, width=512, height=512, prior_timesteps=DEFAULT_STAGE_C_TIMESTEPS, #### length of 30 prior_guidance_scale=4.0, num_images_per_prompt=1, num_inference_steps = 6, #### default num of 12, 6 favour ).images ''' def process(prompt, num_samples, image_resolution, sample_steps, seed,): from PIL import Image with torch.no_grad(): if seed == -1: seed = random.randint(0, 65535) #control_image = Image.fromarray(detected_map) # run inference #generator = torch.Generator(device=device).manual_seed(seed) H = image_resolution W = image_resolution images = [] for i in range(num_samples): image = pipe( prompt, prior_timesteps=DEFAULT_STAGE_C_TIMESTEPS, prior_guidance_scale=4.0, num_inference_steps = sample_steps, num_images_per_prompt=1, height=H, width=W).images[0] images.append(np.asarray(image)) results = images return results #return [255 - detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Rapid Diffusion model from warp-ai/wuerstchen") #gr.Markdown("This _example_ was **drive** from

[https://github.com/svjack/ControlLoRA-Chinese](https://github.com/svjack/ControlLoRA-Chinese)

\n") with gr.Row(): with gr.Column(): #input_image = gr.Image(source='upload', type="numpy", value = "hate_dog.png") prompt = gr.Textbox(label="Prompt", value = "Anthropomorphic cat dressed as a fire fighter") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256) #low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1) #high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1) sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=6, step=1) #scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) #eta = gr.Number(label="eta", value=0.0) #a_prompt = gr.Textbox(label="Added Prompt", value='') #n_prompt = gr.Textbox(label="Negative Prompt", # value='低质量,模糊,混乱') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') #ips = [None, prompt, None, None, num_samples, image_resolution, sample_steps, None, seed, None, None, None] ips = [prompt, num_samples, image_resolution, sample_steps, seed] run_button.click(fn=process, inputs=ips, outputs=[result_gallery], show_progress = True) gr.Examples( [ ["A glass of cola, 8k", 1, 512, 8, 10], ["Anthropomorphic cat dressed as a fire fighter", 1, 512, 8, 20], ], inputs = [prompt, num_samples, image_resolution, sample_steps, seed], label = "Examples" ) block.launch(server_name='0.0.0.0')