swamisharan commited on
Commit
b5e0972
1 Parent(s): 9858bef

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -0
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import torch
4
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
5
+ from langchain.embeddings import SentenceTransformerEmbeddings
6
+ from langchain.vectorstores import Chroma
7
+ from langchain.llms.huggingface_pipeline import HuggingFacePipeline
8
+ from langchain.chains import RetrievalQA
9
+ from langchain.document_loaders import PDFMinerLoader
10
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
11
+ from chromadb.config import Settings
12
+
13
+ # Initialize Chroma settings once
14
+ CHROMA_SETTINGS = Settings(
15
+ chroma_db_impl='duckdb+parquet',
16
+ persist_directory="db",
17
+ anonymized_telemetry=False
18
+ )
19
+
20
+ # Initialize the Chroma database on app start (assuming the database will be initialized only once)
21
+ def init_db_if_not_exists(pdf_path):
22
+ try:
23
+ # Check if the database exists and load it
24
+ db = Chroma(persist_directory=CHROMA_SETTINGS.persist_directory, client_settings=CHROMA_SETTINGS)
25
+ db.get_collection() # This line will raise an error if the collection doesn't exist
26
+ except Exception:
27
+ # If not, initialize the database
28
+ loader = PDFMinerLoader(pdf_path)
29
+ documents = loader.load()
30
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
31
+ texts = text_splitter.split_documents(documents)
32
+ embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
33
+ db = Chroma.from_documents(texts, embeddings, persist_directory=CHROMA_SETTINGS.persist_directory)
34
+ db.persist()
35
+
36
+ # Load model and create pipeline once
37
+ checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
38
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
39
+ base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float32)
40
+ llm_pipeline = HuggingFacePipeline(pipeline=pipeline("text2text-generation", model=base_model, tokenizer=tokenizer))
41
+
42
+ def process_answer(instruction):
43
+ embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
44
+ vectordb = Chroma(persist_directory=CHROMA_SETTINGS.persist_directory, embedding_function=embeddings)
45
+ retriever = vectordb.as_retriever()
46
+ qa = RetrievalQA.from_chain_type(llm=llm_pipeline, chain_type="stuff", retriever=retriever)
47
+ generated_text = qa(instruction)
48
+ return generated_text["result"]
49
+
50
+ def chatbot(pdf_file, user_question):
51
+ if pdf_file: # Only initialize if a new PDF is uploaded
52
+ init_db_if_not_exists(pdf_file.name)
53
+ try:
54
+ answer = process_answer(user_question)
55
+ return answer
56
+ except Exception as e:
57
+ return f"An error occurred: {str(e)}"
58
+
59
+ # Create Gradio Interface
60
+ iface = gr.Interface(
61
+ fn=chatbot,
62
+ inputs=[gr.inputs.File(type="file", label="Upload your PDF"), gr.inputs.Textbox(lines=1, label="Ask a Question")],
63
+ outputs="text",
64
+ title="PDF Chatbot",
65
+ description="Upload a PDF and ask questions about its content.",
66
+ )
67
+
68
+ # Run the Gradio interface
69
+ iface.launch()