File size: 15,029 Bytes
3275eb8
bc2848b
 
 
3275eb8
bc2848b
 
 
 
 
3275eb8
bc2848b
 
 
 
 
 
 
 
 
 
 
 
 
227ae2d
bc2848b
 
 
 
227ae2d
 
 
 
bc2848b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227ae2d
bc2848b
 
 
 
 
 
 
 
 
 
 
227ae2d
bc2848b
227ae2d
 
bc2848b
 
227ae2d
bc2848b
 
227ae2d
bc2848b
 
 
 
 
 
 
 
 
 
 
 
 
 
d0bef40
 
 
 
 
 
 
 
 
bc2848b
d0bef40
bc2848b
 
227ae2d
 
 
 
d0bef40
 
 
 
 
 
 
227ae2d
d0bef40
bc2848b
 
 
 
 
227ae2d
 
 
 
 
 
bc2848b
 
 
 
 
 
 
 
227ae2d
 
 
bc2848b
 
 
227ae2d
bc2848b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3275eb8
5fdd310
0f6ab32
3275eb8
 
bc2848b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3275eb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc2848b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cdfb93
bc2848b
 
 
 
 
227ae2d
 
 
 
 
bc2848b
 
 
 
 
 
 
 
 
 
 
 
30cc62d
bc2848b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227ae2d
 
30cc62d
227ae2d
 
bc2848b
227ae2d
 
30cc62d
bc2848b
 
 
30cc62d
bc2848b
227ae2d
 
 
30cc62d
227ae2d
2da877e
 
 
 
 
 
 
 
 
 
 
bc2848b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3275eb8
bc2848b
 
3275eb8
bc2848b
 
 
 
 
 
30cc62d
bc2848b
 
30cc62d
bc2848b
 
3275eb8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import gradio as gr
import asyncio
from typing import List, Dict, Any, Tuple, Generator
from beeai import Bee
from huggingface_hub import InferenceClient
import logging
from datetime import datetime
import pytz
import pandas as pd
from functools import partial

# Set up logging with a higher level
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
                    filename='app.log',
                    filemode='w')

# Global variable to track the current page
current_page = 1
total_pages = 1

async def fetch_conversations(api_key: str, page: int = 1) -> Dict[str, Any]:
    bee = Bee(api_key)
    logging.info(f"Fetching conversations for user 'me', page {page}")
    conversations = await bee.get_conversations("me", page=page, limit=15)
    return conversations

def format_end_time(end_time: str) -> str:
    utc_time = datetime.fromisoformat(end_time.replace('Z', '+00:00'))
    user_timezone = pytz.timezone('US/Pacific')  # TODO: Replace with actual user timezone
    local_time = utc_time.astimezone(user_timezone)
    timezone_abbr = local_time.strftime('%Z')
    return f"{local_time.strftime('%I:%M %p')} {timezone_abbr}"

async def fetch_conversation(api_key: str, conversation_id: int) -> Dict[str, Any]:
    bee = Bee(api_key)
    try:
        logging.info(f"Fetching conversation with ID: {conversation_id}")
        full_conversation = await bee.get_conversation("me", conversation_id)
        logging.debug(f"Raw conversation data: {full_conversation}")
        return full_conversation
    except Exception as e:
        logging.error(f"Error fetching conversation {conversation_id}: {str(e)}")
        return {"error": f"Failed to fetch conversation: {str(e)}"}

def format_conversation(data: Dict[str, Any]) -> str:
    try:
        conversation = data.get("conversation", {})
        logging.debug(f"Conversation keys: {conversation.keys()}")
        formatted = f"# Conversation [{conversation['id']}] "
        # Format start_time and end_time
        start_time = conversation.get('start_time')
        end_time = conversation.get('end_time')
        if start_time and end_time:
            start_dt = datetime.fromisoformat(start_time.replace('Z', '+00:00'))
            end_dt = datetime.fromisoformat(end_time.replace('Z', '+00:00'))
            pacific_tz = pytz.timezone('US/Pacific')
            start_pacific = start_dt.astimezone(pacific_tz)
            end_pacific = end_dt.astimezone(pacific_tz)
            
            if start_pacific.date() == end_pacific.date():
                formatted += f"{start_pacific.strftime('%I:%M %p')} - {end_pacific.strftime('%I:%M %p')} PT\n\n"
            else:
                formatted += f"\n\n**Start**: {start_pacific.strftime('%Y-%m-%d %I:%M %p')} PT\n"
                formatted += f"**End**: {end_pacific.strftime('%Y-%m-%d %I:%M %p')} PT\n"
        elif start_time:
            start_time_formatted = format_end_time(start_time)
            formatted += f"**Start**: {start_time_formatted}\n"
        elif end_time:
            end_time_formatted = format_end_time(end_time)
            formatted += f"**End**: {end_time_formatted}\n"
        
        # Display short_summary nicely
        if 'short_summary' in conversation:
            formatted += f"\n## Short Summary\n\n{conversation['short_summary']}\n"

        formatted += "\n"  # Add a newline for better readability

        formatted += f"\n{conversation['summary']}"
        # for key in ['summary']: #, 'short_summary', 'state', 'created_at', 'updated_at']:
        #     if key in conversation:
        #         formatted += f"**{key}**: {conversation[key]}\n"
        if 'transcriptions' in conversation and conversation['transcriptions']:
            formatted += "\n\n## Transcriptions\n\n"
            last_timestamp = None
            last_speaker = None

            # Sort utterances chronologically
            sorted_utterances = sorted(
                conversation['transcriptions'][0].get('utterances', []),
                key=lambda x: x.get('spoken_at', '')
            )

            for utterance in sorted_utterances:
                current_timestamp = utterance.get('spoken_at')
                speaker = int(utterance.get('speaker')) if utterance.get('speaker', '').isdigit() else str(utterance.get('speaker', ''))
                text = utterance.get('text')
                
                if last_timestamp is not None:
                    time_diff = datetime.fromisoformat(current_timestamp.replace('Z', '+00:00')) - datetime.fromisoformat(last_timestamp.replace('Z', '+00:00'))
                    if time_diff.total_seconds() > 300:  # More than 5 minutes
                        local_time = datetime.fromisoformat(current_timestamp.replace('Z', '+00:00')).astimezone().strftime('%I:%M %p')
                        formatted += f"\n\n[{local_time}]\n"
                # Convert speaker to string to ensure consistent comparison
           
                if speaker != last_speaker:
                    formatted += f"\n\nSpeaker **[{speaker}](https://kagi.com/search?q={current_timestamp})**: {text}"
                else:
                    formatted += f" {text}"
                last_timestamp = current_timestamp
                last_speaker = speaker
        return formatted
    except Exception as e:
        logging.error(f"Error formatting conversation: {str(e)}")
        return f"Error formatting conversation: {str(e)}\n\nRaw data: {conversation}"

def format_duration(start_time: str, end_time: str) -> str:
    start_dt = datetime.fromisoformat(start_time.replace('Z', '+00:00'))
    end_dt = datetime.fromisoformat(end_time.replace('Z', '+00:00'))
    duration = end_dt - start_dt
    return f"{duration.total_seconds() // 3600:.0f}h {((duration.total_seconds() % 3600) // 60):.0f}m"

async def list_conversations(api_key: str) -> Tuple[pd.DataFrame, str, int, int]:
    global current_page, total_pages
    conversations_data = await fetch_conversations(api_key, current_page)
    conversations = conversations_data.get("conversations", [])
    total_pages = conversations_data.get("totalPages", 1)
    df = pd.DataFrame([
        {
            "ID": c['id'],
            "Duration": format_duration(c['start_time'], c['end_time']) if c['start_time'] and c['end_time'] else "",
            "Summary": ' '.join(c['short_summary'].split()[1:21]) + "..." if c['short_summary'] else "",
            "End Time": format_end_time(c['end_time']) if c['end_time'] else "",
        }
        for c in conversations
    ])
    df = df[["ID", "End Time", "Duration", "Summary"]]  # Reorder columns to ensure ID is first
    info = f"Page {current_page} of {total_pages}"
    return df, info, current_page, total_pages

async def display_conversation(api_key: str, conversation_id: int) -> str:
    full_conversation = await fetch_conversation(api_key, conversation_id)
    if "error" in full_conversation:
        logging.error(f"Error in full_conversation: {full_conversation['error']}")
        return full_conversation["error"]
    formatted_conversation = format_conversation(full_conversation)
    return formatted_conversation

async def delete_conversation(api_key: str, conversation_id: int) -> str:
    bee = Bee(api_key)
    try:
        await bee.delete_conversation("me", conversation_id)
        return f"Conversation {conversation_id} deleted successfully."
    except Exception as e:
        logging.error(f"Error deleting conversation {conversation_id}: {str(e)}")
        return f"Failed to delete conversation: {str(e)}"

# client = InferenceClient("Qwen/Qwen2.5-14B-Instruct") # needs more memory than available in free tier - The model Qwen/Qwen2.5-14B-Instruct is too large to be loaded automatically (29GB > 10GB)
client = InferenceClient("microsoft/Phi-3-mini-128k-instruct")

def respond(
    message: str,
    history: List[Tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    conversation_context: str
) -> Generator[str, None, None]:
    messages = [
        {"role": "system", "content": system_message},
        {"role": "system", "content": f"Here's the context of the conversation: {conversation_context}"}
    ]

    for human, assistant in history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

# Add this new function
def get_selected_conversation_id(table_data):
    if table_data and len(table_data) > 0:
        # Assuming the ID is in the first column
        return table_data[0][0]
    return None

async def delete_selected_conversation(api_key: str, conversation_id: int):
    if not api_key or not conversation_id:
        return "No conversation selected or API key missing", None, None, gr.update(visible=False), ""
    
    logging.info(f"Deleting conversation with ID: {conversation_id}")
    
    try:
        result = await delete_conversation(api_key, conversation_id)
        df, info, current_page, total_pages = await list_conversations(api_key)
        return result, df, info, gr.update(visible=False), ""
    except Exception as e:
        error_message = f"Error deleting conversation: {str(e)}"
        logging.error(error_message)
        return error_message, None, None, gr.update(visible=False), ""

with gr.Blocks() as demo:
    gr.Markdown("# Bee AI Conversation Viewer and Chat. See [source](https://github.com/swyxio/BeeWeb/) and [Space](https://huggingface.co/spaces/swyx/BeeWeb)")
    
    with gr.Row():
        with gr.Column(scale=1):
            api_key = gr.Textbox(label="Enter your Bee API Key", type="password")
            load_button = gr.Button("Load Conversations")
            conversation_table = gr.Dataframe(
                label="Select a conversation (CLICK ON THE ID!!!)",
                interactive=True,
                row_count=10  # Adjust this number to approximate the desired height
            )
            info_text = gr.Textbox(label="Info", interactive=False)
            prev_page = gr.Button("Previous Page")
            next_page = gr.Button("Next Page")
        
        with gr.Column(scale=2):
            conversation_details = gr.Markdown(
                label="Conversation Details",
                value="Enter your Bee API Key, click 'Load Conversations', then select a conversation to view details here."
            )
            delete_button = gr.Button("Delete Conversation", visible=False)
    
    selected_conversation_id = gr.State(None)
    conversation_context = gr.State("")

    async def load_conversations(api_key):
        try:
            df, info, current_page, total_pages = await list_conversations(api_key)
            prev_disabled = current_page == 1
            next_disabled = current_page == total_pages
            return df, info, gr.update(visible=True), gr.update(interactive=not prev_disabled), gr.update(interactive=not next_disabled)
        except Exception as e:
            error_message = f"Error loading conversations: {str(e)}"
            logging.error(error_message)
            return None, error_message, gr.update(visible=False), gr.update(interactive=False), gr.update(interactive=False)

    load_button.click(load_conversations, inputs=[api_key], outputs=[conversation_table, info_text, delete_button, prev_page, next_page])

    async def update_conversation(api_key, evt: gr.SelectData):
        try:
            logging.info(f"SelectData event: index={evt.index}, value={evt.value}")
            conversation_id = int(evt.value)
            logging.info(f"Updating conversation with ID: {conversation_id}")
            
            # Return a loading message immediately
            yield gr.update(value="Loading conversation details...", visible=True), gr.update(visible=False), None, None
            
            # Fetch and format the conversation
            formatted_conversation = await display_conversation(api_key, conversation_id)
            
            # Return the formatted conversation and update the UI
            yield formatted_conversation, gr.update(visible=True), conversation_id, formatted_conversation
        except Exception as e:
            error_message = f"Error updating conversation: {str(e)}"
            logging.error(error_message)
            yield error_message, gr.update(visible=False), None, None

    conversation_table.select(
        update_conversation,
        inputs=[api_key],
        outputs=[conversation_details, delete_button, selected_conversation_id, conversation_context],
    )
    # .then(
    #     lambda: None,  # This is a no-op function
    #     None,  # No inputs
    #     None,  # No outputs
    #     _js="""
    #     () => {
    #         // Scroll to the conversation details
    #         document.querySelector('#conversation_details').scrollIntoView({behavior: 'smooth'});
    #     }
    #     """
    # )

    delete_button.click(
        delete_selected_conversation,
        inputs=[api_key, selected_conversation_id],
        outputs=[conversation_details, conversation_table, info_text, delete_button, conversation_details]
    )

    async def change_page(api_key: str, direction: int) -> Tuple[pd.DataFrame, str, gr.update, gr.update]:
        global current_page, total_pages
        current_page += direction
        current_page = max(1, min(current_page, total_pages))  # Ensure page is within bounds
        df, info, current_page, total_pages = await list_conversations(api_key)
        prev_disabled = current_page == 1
        next_disabled = current_page == total_pages
        return df, info, gr.update(interactive=not prev_disabled), gr.update(interactive=not next_disabled)

    prev_page.click(partial(change_page, direction=-1), inputs=[api_key], outputs=[conversation_table, info_text, prev_page, next_page])
    next_page.click(partial(change_page, direction=1), inputs=[api_key], outputs=[conversation_table, info_text, prev_page, next_page])

    gr.Markdown("## Chat about the conversation")
    
    chat_interface = gr.ChatInterface(
        respond,
        additional_inputs=[
            gr.Textbox(value="You are a friendly Chatbot. Analyze and discuss the given conversation context.", label="System message"),
            gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
            gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
            gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
            conversation_context
        ],
    )

if __name__ == "__main__":
    demo.launch()