File size: 15,029 Bytes
3275eb8 bc2848b 3275eb8 bc2848b 3275eb8 bc2848b 227ae2d bc2848b 227ae2d bc2848b 227ae2d bc2848b 227ae2d bc2848b 227ae2d bc2848b 227ae2d bc2848b 227ae2d bc2848b d0bef40 bc2848b d0bef40 bc2848b 227ae2d d0bef40 227ae2d d0bef40 bc2848b 227ae2d bc2848b 227ae2d bc2848b 227ae2d bc2848b 3275eb8 5fdd310 0f6ab32 3275eb8 bc2848b 3275eb8 bc2848b 9cdfb93 bc2848b 227ae2d bc2848b 30cc62d bc2848b 227ae2d 30cc62d 227ae2d bc2848b 227ae2d 30cc62d bc2848b 30cc62d bc2848b 227ae2d 30cc62d 227ae2d 2da877e bc2848b 3275eb8 bc2848b 3275eb8 bc2848b 30cc62d bc2848b 30cc62d bc2848b 3275eb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
import asyncio
from typing import List, Dict, Any, Tuple, Generator
from beeai import Bee
from huggingface_hub import InferenceClient
import logging
from datetime import datetime
import pytz
import pandas as pd
from functools import partial
# Set up logging with a higher level
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
filename='app.log',
filemode='w')
# Global variable to track the current page
current_page = 1
total_pages = 1
async def fetch_conversations(api_key: str, page: int = 1) -> Dict[str, Any]:
bee = Bee(api_key)
logging.info(f"Fetching conversations for user 'me', page {page}")
conversations = await bee.get_conversations("me", page=page, limit=15)
return conversations
def format_end_time(end_time: str) -> str:
utc_time = datetime.fromisoformat(end_time.replace('Z', '+00:00'))
user_timezone = pytz.timezone('US/Pacific') # TODO: Replace with actual user timezone
local_time = utc_time.astimezone(user_timezone)
timezone_abbr = local_time.strftime('%Z')
return f"{local_time.strftime('%I:%M %p')} {timezone_abbr}"
async def fetch_conversation(api_key: str, conversation_id: int) -> Dict[str, Any]:
bee = Bee(api_key)
try:
logging.info(f"Fetching conversation with ID: {conversation_id}")
full_conversation = await bee.get_conversation("me", conversation_id)
logging.debug(f"Raw conversation data: {full_conversation}")
return full_conversation
except Exception as e:
logging.error(f"Error fetching conversation {conversation_id}: {str(e)}")
return {"error": f"Failed to fetch conversation: {str(e)}"}
def format_conversation(data: Dict[str, Any]) -> str:
try:
conversation = data.get("conversation", {})
logging.debug(f"Conversation keys: {conversation.keys()}")
formatted = f"# Conversation [{conversation['id']}] "
# Format start_time and end_time
start_time = conversation.get('start_time')
end_time = conversation.get('end_time')
if start_time and end_time:
start_dt = datetime.fromisoformat(start_time.replace('Z', '+00:00'))
end_dt = datetime.fromisoformat(end_time.replace('Z', '+00:00'))
pacific_tz = pytz.timezone('US/Pacific')
start_pacific = start_dt.astimezone(pacific_tz)
end_pacific = end_dt.astimezone(pacific_tz)
if start_pacific.date() == end_pacific.date():
formatted += f"{start_pacific.strftime('%I:%M %p')} - {end_pacific.strftime('%I:%M %p')} PT\n\n"
else:
formatted += f"\n\n**Start**: {start_pacific.strftime('%Y-%m-%d %I:%M %p')} PT\n"
formatted += f"**End**: {end_pacific.strftime('%Y-%m-%d %I:%M %p')} PT\n"
elif start_time:
start_time_formatted = format_end_time(start_time)
formatted += f"**Start**: {start_time_formatted}\n"
elif end_time:
end_time_formatted = format_end_time(end_time)
formatted += f"**End**: {end_time_formatted}\n"
# Display short_summary nicely
if 'short_summary' in conversation:
formatted += f"\n## Short Summary\n\n{conversation['short_summary']}\n"
formatted += "\n" # Add a newline for better readability
formatted += f"\n{conversation['summary']}"
# for key in ['summary']: #, 'short_summary', 'state', 'created_at', 'updated_at']:
# if key in conversation:
# formatted += f"**{key}**: {conversation[key]}\n"
if 'transcriptions' in conversation and conversation['transcriptions']:
formatted += "\n\n## Transcriptions\n\n"
last_timestamp = None
last_speaker = None
# Sort utterances chronologically
sorted_utterances = sorted(
conversation['transcriptions'][0].get('utterances', []),
key=lambda x: x.get('spoken_at', '')
)
for utterance in sorted_utterances:
current_timestamp = utterance.get('spoken_at')
speaker = int(utterance.get('speaker')) if utterance.get('speaker', '').isdigit() else str(utterance.get('speaker', ''))
text = utterance.get('text')
if last_timestamp is not None:
time_diff = datetime.fromisoformat(current_timestamp.replace('Z', '+00:00')) - datetime.fromisoformat(last_timestamp.replace('Z', '+00:00'))
if time_diff.total_seconds() > 300: # More than 5 minutes
local_time = datetime.fromisoformat(current_timestamp.replace('Z', '+00:00')).astimezone().strftime('%I:%M %p')
formatted += f"\n\n[{local_time}]\n"
# Convert speaker to string to ensure consistent comparison
if speaker != last_speaker:
formatted += f"\n\nSpeaker **[{speaker}](https://kagi.com/search?q={current_timestamp})**: {text}"
else:
formatted += f" {text}"
last_timestamp = current_timestamp
last_speaker = speaker
return formatted
except Exception as e:
logging.error(f"Error formatting conversation: {str(e)}")
return f"Error formatting conversation: {str(e)}\n\nRaw data: {conversation}"
def format_duration(start_time: str, end_time: str) -> str:
start_dt = datetime.fromisoformat(start_time.replace('Z', '+00:00'))
end_dt = datetime.fromisoformat(end_time.replace('Z', '+00:00'))
duration = end_dt - start_dt
return f"{duration.total_seconds() // 3600:.0f}h {((duration.total_seconds() % 3600) // 60):.0f}m"
async def list_conversations(api_key: str) -> Tuple[pd.DataFrame, str, int, int]:
global current_page, total_pages
conversations_data = await fetch_conversations(api_key, current_page)
conversations = conversations_data.get("conversations", [])
total_pages = conversations_data.get("totalPages", 1)
df = pd.DataFrame([
{
"ID": c['id'],
"Duration": format_duration(c['start_time'], c['end_time']) if c['start_time'] and c['end_time'] else "",
"Summary": ' '.join(c['short_summary'].split()[1:21]) + "..." if c['short_summary'] else "",
"End Time": format_end_time(c['end_time']) if c['end_time'] else "",
}
for c in conversations
])
df = df[["ID", "End Time", "Duration", "Summary"]] # Reorder columns to ensure ID is first
info = f"Page {current_page} of {total_pages}"
return df, info, current_page, total_pages
async def display_conversation(api_key: str, conversation_id: int) -> str:
full_conversation = await fetch_conversation(api_key, conversation_id)
if "error" in full_conversation:
logging.error(f"Error in full_conversation: {full_conversation['error']}")
return full_conversation["error"]
formatted_conversation = format_conversation(full_conversation)
return formatted_conversation
async def delete_conversation(api_key: str, conversation_id: int) -> str:
bee = Bee(api_key)
try:
await bee.delete_conversation("me", conversation_id)
return f"Conversation {conversation_id} deleted successfully."
except Exception as e:
logging.error(f"Error deleting conversation {conversation_id}: {str(e)}")
return f"Failed to delete conversation: {str(e)}"
# client = InferenceClient("Qwen/Qwen2.5-14B-Instruct") # needs more memory than available in free tier - The model Qwen/Qwen2.5-14B-Instruct is too large to be loaded automatically (29GB > 10GB)
client = InferenceClient("microsoft/Phi-3-mini-128k-instruct")
def respond(
message: str,
history: List[Tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
conversation_context: str
) -> Generator[str, None, None]:
messages = [
{"role": "system", "content": system_message},
{"role": "system", "content": f"Here's the context of the conversation: {conversation_context}"}
]
for human, assistant in history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Add this new function
def get_selected_conversation_id(table_data):
if table_data and len(table_data) > 0:
# Assuming the ID is in the first column
return table_data[0][0]
return None
async def delete_selected_conversation(api_key: str, conversation_id: int):
if not api_key or not conversation_id:
return "No conversation selected or API key missing", None, None, gr.update(visible=False), ""
logging.info(f"Deleting conversation with ID: {conversation_id}")
try:
result = await delete_conversation(api_key, conversation_id)
df, info, current_page, total_pages = await list_conversations(api_key)
return result, df, info, gr.update(visible=False), ""
except Exception as e:
error_message = f"Error deleting conversation: {str(e)}"
logging.error(error_message)
return error_message, None, None, gr.update(visible=False), ""
with gr.Blocks() as demo:
gr.Markdown("# Bee AI Conversation Viewer and Chat. See [source](https://github.com/swyxio/BeeWeb/) and [Space](https://huggingface.co/spaces/swyx/BeeWeb)")
with gr.Row():
with gr.Column(scale=1):
api_key = gr.Textbox(label="Enter your Bee API Key", type="password")
load_button = gr.Button("Load Conversations")
conversation_table = gr.Dataframe(
label="Select a conversation (CLICK ON THE ID!!!)",
interactive=True,
row_count=10 # Adjust this number to approximate the desired height
)
info_text = gr.Textbox(label="Info", interactive=False)
prev_page = gr.Button("Previous Page")
next_page = gr.Button("Next Page")
with gr.Column(scale=2):
conversation_details = gr.Markdown(
label="Conversation Details",
value="Enter your Bee API Key, click 'Load Conversations', then select a conversation to view details here."
)
delete_button = gr.Button("Delete Conversation", visible=False)
selected_conversation_id = gr.State(None)
conversation_context = gr.State("")
async def load_conversations(api_key):
try:
df, info, current_page, total_pages = await list_conversations(api_key)
prev_disabled = current_page == 1
next_disabled = current_page == total_pages
return df, info, gr.update(visible=True), gr.update(interactive=not prev_disabled), gr.update(interactive=not next_disabled)
except Exception as e:
error_message = f"Error loading conversations: {str(e)}"
logging.error(error_message)
return None, error_message, gr.update(visible=False), gr.update(interactive=False), gr.update(interactive=False)
load_button.click(load_conversations, inputs=[api_key], outputs=[conversation_table, info_text, delete_button, prev_page, next_page])
async def update_conversation(api_key, evt: gr.SelectData):
try:
logging.info(f"SelectData event: index={evt.index}, value={evt.value}")
conversation_id = int(evt.value)
logging.info(f"Updating conversation with ID: {conversation_id}")
# Return a loading message immediately
yield gr.update(value="Loading conversation details...", visible=True), gr.update(visible=False), None, None
# Fetch and format the conversation
formatted_conversation = await display_conversation(api_key, conversation_id)
# Return the formatted conversation and update the UI
yield formatted_conversation, gr.update(visible=True), conversation_id, formatted_conversation
except Exception as e:
error_message = f"Error updating conversation: {str(e)}"
logging.error(error_message)
yield error_message, gr.update(visible=False), None, None
conversation_table.select(
update_conversation,
inputs=[api_key],
outputs=[conversation_details, delete_button, selected_conversation_id, conversation_context],
)
# .then(
# lambda: None, # This is a no-op function
# None, # No inputs
# None, # No outputs
# _js="""
# () => {
# // Scroll to the conversation details
# document.querySelector('#conversation_details').scrollIntoView({behavior: 'smooth'});
# }
# """
# )
delete_button.click(
delete_selected_conversation,
inputs=[api_key, selected_conversation_id],
outputs=[conversation_details, conversation_table, info_text, delete_button, conversation_details]
)
async def change_page(api_key: str, direction: int) -> Tuple[pd.DataFrame, str, gr.update, gr.update]:
global current_page, total_pages
current_page += direction
current_page = max(1, min(current_page, total_pages)) # Ensure page is within bounds
df, info, current_page, total_pages = await list_conversations(api_key)
prev_disabled = current_page == 1
next_disabled = current_page == total_pages
return df, info, gr.update(interactive=not prev_disabled), gr.update(interactive=not next_disabled)
prev_page.click(partial(change_page, direction=-1), inputs=[api_key], outputs=[conversation_table, info_text, prev_page, next_page])
next_page.click(partial(change_page, direction=1), inputs=[api_key], outputs=[conversation_table, info_text, prev_page, next_page])
gr.Markdown("## Chat about the conversation")
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot. Analyze and discuss the given conversation context.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
conversation_context
],
)
if __name__ == "__main__":
demo.launch()
|