File size: 33,404 Bytes
99bf727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f3af9a
e43f981
99bf727
 
c9a95b0
99bf727
 
 
 
 
 
 
 
 
 
e43f981
 
99bf727
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
import os
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
import glob, fitz
import PIL
import re
import torch
import cv2
import pytesseract
import pandas as pd
import numpy as np
import gradio as gr
from PIL import Image
from tqdm import tqdm
from difflib import SequenceMatcher
from itertools import groupby
from scipy import ndimage
from scipy.ndimage import interpolation as inter
from datasets import load_metric
from datasets import load_dataset
from datasets.features import ClassLabel
from transformers import AutoProcessor
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoModelForTokenClassification
from transformers.data.data_collator import default_data_collator
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
from transformers import LayoutLMv3ForTokenClassification,LayoutLMv3FeatureExtractor,LayoutLMv3ImageProcessor
import io
# import paddleocr
# from paddleocr import PaddleOCR
auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
import warnings
# Ignore warning messages
warnings.filterwarnings("ignore")

id2label= {0: 'others', 1: 'issuer_name', 2: 'issuer_addr', 3: 'issuer_cap', 4: 'issuer_city', 5: 'issuer_prov', 6: 'issuer_state', 7: 'issuer_tel', 8: 'issuer_id', 9: 'issuer_fax', 10: 'issuer_vat', 11: 'issuer_contact', 12: 'issuer_contact_email', 13: 'issuer_contact_phone', 14: 'receiver_name', 15: 'receiver_addr', 16: 'receiver_cap', 17: 'receiver_city', 18: 'receiver_prov', 19: 'receiver_state', 20: 'receiver_tel', 21: 'receiver_fax', 22: 'receiver_vat', 23: 'receiver_id', 24: 'receiver_contact', 25: 'dest_name', 26: 'dest_addr', 27: 'dest_cap', 28: 'dest_city', 29: 'dest_prov', 30: 'dest_state', 31: 'dest_tel', 32: 'dest_fax', 33: 'dest_vat', 34: 'doc_type', 35: 'doc_nr', 36: 'doc_date', 37: 'order_nr', 38: 'order_date', 39: 'service_order', 40: 'shipment_nr', 41: 'client_reference', 42: 'client_vat', 43: 'client_id', 44: 'client_code', 45: 'time', 46: 'notes', 47: 'client_tel', 48: 'art_code', 49: 'ref_code', 50: 'order_reason', 51: 'order_ref', 52: 'order_ref_date', 53: 'detail_desc', 54: 'lot_id', 55: 'lot_qty', 56: 'detail_um', 57: 'detail_qty', 58: 'detail_tare', 59: 'detail_grossw', 60: 'detail_packages', 61: 'detail_netw', 62: 'detail_origin', 63: 'payment_bank', 64: 'payment_terms', 65: 'tot_qty', 66: 'tot_grossw', 67: 'tot_netw', 68: 'tot_volume', 69: 'shipment_reason', 70: 'package_type', 71: 'transport_respons', 72: 'transport_vectors', 73: 'transport_terms', 74: 'transport_datetime', 75: 'return_plt', 76: 'nonreturn_plt', 77: 'dest_signature', 78: 'driver_signature', 79: 'transport_signature', 80: 'page', 81: 'varieta', 82: 'raccolta', 83: 'detail_volume'}
custom_config = r'--oem 3 --psm 6'
lang='eng'


#Google Vision OCR 
from google.cloud import vision_v1p3beta1 as vision
from google.cloud import vision_v1p3beta1 as vision
from google.cloud import vision
# os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "test-apikey.json"

processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
model = AutoModelForTokenClassification.from_pretrained("sxandie/doc-ai-information-extraction",use_auth_token=auth_token)

from tabulate import tabulate
def print_df(df):
  print(tabulate(df, headers = df.columns, tablefmt = 'psql'))


def process_image_pytesseract(image,width,height):
    width, height = image.size
    feature_extractor = LayoutLMv3ImageProcessor(apply_ocr=True,lang=lang)
    encoding_feature_extractor = feature_extractor(image, return_tensors="pt",truncation=True)
    words, boxes = encoding_feature_extractor.words, encoding_feature_extractor.boxes
    return words,boxes

def create_bounding_box5(vertices, width_scale, height_scale):

  # Get the x, y coordinates
  x1 = int(vertices[0].x * width_scale)
  y1 = int(vertices[0].y * height_scale)

  x2 = int(vertices[2].x * width_scale)
  y2 = int(vertices[2].y * height_scale)

  # Validate x1 < x2
  if x1 > x2:
    x1, x2 = x2, x1

  # Validate y1 < y2
  if y1 > y2:
    y1, y2 = y2, y1

  # Return valid bounding box
  return [x1, y1, x2, y2]

#Google Vision OCR
def process_image_GoogleVision(image, width, height):
    inference_image = [image.convert("RGB")]
    client = vision.ImageAnnotatorClient()
    with io.BytesIO() as output:
        image.save(output, format='JPEG')
        content = output.getvalue()
    image = vision.Image(content=content)

    response = client.text_detection(image=image)
    texts = response.text_annotations

    # Get the bounding box vertices and remove the first item
    bboxes = [text.bounding_poly.vertices[1:] for text in texts]
    # Create the list of words and boxes
    words = [text.description for text in texts]
    boxes = [create_bounding_box5(bbox, 1000/width, 1000/height) for bbox in bboxes]
    return words,boxes


def generate_unique_colors(id2label):
     # Generate unique colors
     label_ints = np.random.choice(len(PIL.ImageColor.colormap), len(id2label), replace=False)
     label_color_pil = list(PIL.ImageColor.colormap.values())
     label_color = [label_color_pil[i] for i in label_ints]

     color = {}
     for k, v in id2label.items():
         if v[:2] == '':
             color['o'] = label_color[k]
         else:
             color[v[0:]] = label_color[k]

     return color

def create_bounding_box1(bbox_data, width_scale: float, height_scale: float):
    xs = []
    ys = []
    for x, y in bbox_data:
        xs.append(x)
        ys.append(y)

    left = int(max(0, min(xs) * width_scale))
    top = int(max(0, min(ys) * height_scale))
    right = int(min(1000, max(xs) * width_scale))
    bottom = int(min(1000, max(ys) * height_scale))

    return [left, top, right, bottom]



def unnormalize_box(bbox, width, height):
     return [
         width * (bbox[0] / 1000),
         height * (bbox[1] / 1000),
         width * (bbox[2] / 1000),
         height * (bbox[3] / 1000),
     ]


def iob_to_label(label):
    return id2label.get(label, 'others')

def process_image(image):
    custom_config = r'--oem 3 --psm 6'
    # lang='eng+deu+ita+chi_sim'
    lang='eng'
    width, height = image.size
    feature_extractor = LayoutLMv3FeatureExtractor(apply_ocr=True)
    encoding_feature_extractor = feature_extractor(image, return_tensors="pt",truncation=True)
    words, boxes = encoding_feature_extractor.words, encoding_feature_extractor.boxes

    custom_config = r'--oem 3 --psm 6'
    # encode
    inference_image = [image.convert("RGB")]
    encoding = processor(inference_image , truncation=True, return_offsets_mapping=True, return_tensors="pt", padding="max_length", stride =128, max_length=512, return_overflowing_tokens=True)
    offset_mapping = encoding.pop('offset_mapping')
    overflow_to_sample_mapping = encoding.pop('overflow_to_sample_mapping')

    # change the shape of pixel values
    x = []
    for i in range(0, len(encoding['pixel_values'])):
      x.append(encoding['pixel_values'][i])
    x = torch.stack(x)
    encoding['pixel_values'] = x

    # forward pass
    outputs = model(**encoding)

    # get predictions
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()

    # only keep non-subword predictions
    preds = []
    l_words = []
    bboxes = []
    token_section_num = []

    if (len(token_boxes) == 512):
      predictions = [predictions]
      token_boxes = [token_boxes]


    for i in range(0, len(token_boxes)):
      for j in range(0, len(token_boxes[i])):
        unnormal_box = unnormalize_box(token_boxes[i][j], width, height)
        if (np.asarray(token_boxes[i][j]).shape != (4,)):
          continue
        elif (token_boxes[i][j] == [0, 0, 0, 0] or token_boxes[i][j] == 0):
          #print('zero found!')
          continue
        # if bbox is available in the list, just we need to update text
        elif (unnormal_box not in bboxes):
          preds.append(predictions[i][j])
          l_words.append(processor.tokenizer.decode(encoding["input_ids"][i][j]))
          bboxes.append(unnormal_box)
          token_section_num.append(i)
        else:
          # we have to update the word
          _index = bboxes.index(unnormal_box)
          if (token_section_num[_index] == i):
            # check if they're in a same section or not (documents with more than 512 tokens will divide to seperate
            # parts, so it's possible to have a word in both of the pages and we have to control that repetetive words
            # HERE: because they're in a same section, so we can merge them safely
            l_words[_index] = l_words[_index] + processor.tokenizer.decode(encoding["input_ids"][i][j])

          else:
            continue

    return bboxes, preds, l_words, image



def process_image_encoding(model, processor, image, words, boxes,width,height):
    # encode
    inference_image = [image.convert("RGB")]
    encoding = processor(inference_image ,words,boxes=boxes, truncation=True, return_offsets_mapping=True, return_tensors="pt",
                     padding="max_length", stride =128, max_length=512, return_overflowing_tokens=True)
    offset_mapping = encoding.pop('offset_mapping')
    overflow_to_sample_mapping = encoding.pop('overflow_to_sample_mapping')

    # change the shape of pixel values
    x = []
    for i in range(0, len(encoding['pixel_values'])):
      x.append(encoding['pixel_values'][i])
    x = torch.stack(x)
    encoding['pixel_values'] = x

    # forward pass
    outputs = model(**encoding)

    # get predictions
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()

    # only keep non-subword predictions
    preds = []
    l_words = []
    bboxes = []
    token_section_num = []

    if (len(token_boxes) == 512):
      predictions = [predictions]
      token_boxes = [token_boxes]

    for i in range(0, len(token_boxes)):
      for j in range(0, len(token_boxes[i])):
        unnormal_box = unnormalize_box(token_boxes[i][j], width, height)
        if (np.asarray(token_boxes[i][j]).shape != (4,)):
          continue
        elif (token_boxes[i][j] == [0, 0, 0, 0] or token_boxes[i][j] == 0):
          #print('zero found!')
          continue
        # if bbox is available in the list, just we need to update text
        elif (unnormal_box not in bboxes):
          preds.append(predictions[i][j])
          l_words.append(processor.tokenizer.decode(encoding["input_ids"][i][j]))
          bboxes.append(unnormal_box)
          token_section_num.append(i)
        else:
          # we have to update the word
          _index = bboxes.index(unnormal_box)
          if (token_section_num[_index] == i):
            # check if they're in a same section or not (documents with more than 512 tokens will divide to seperate
            # parts, so it's possible to have a word in both of the pages and we have to control that repetetive words
            # HERE: because they're in a same section, so we can merge them safely
            l_words[_index] = l_words[_index] + processor.tokenizer.decode(encoding["input_ids"][i][j])
          else:
            continue

    return bboxes, preds, l_words, image


def process_form_(json_df):

  labels = [x['LABEL'] for x in json_df]
  texts = [x['TEXT'] for x in json_df]
  cmb_list = []
  for i, j in enumerate(labels):
    cmb_list.append([labels[i], texts[i]])

  grouper = lambda l: [[k] + sum((v[1::] for v in vs), []) for k, vs in groupby(l, lambda x: x[0])]

  list_final = grouper(cmb_list)
  lst_final = []
  for x in list_final:
    json_dict = {}
    json_dict[x[0]] = (' ').join(x[1:])
    lst_final.append(json_dict)

  return lst_final
    

def createExcel(maindf, detailsdf, pdffile):
  outputPath = f'{pdffile}.xlsx'
  with pd.ExcelWriter(outputPath, engine='xlsxwriter') as writer:
    maindf.to_excel(writer, sheet_name='headers', index=False)
    detailsdf.to_excel(writer, sheet_name='details', index=False)
    worksheet1 = writer.sheets["headers"]
    for idx, col in enumerate(maindf):
      series = maindf[col]
      max_len = max((
        series.astype(str).map(len).max(),
        len(str(series.name))
      )) + 1
      worksheet1.set_column(idx, idx, max_len)
    worksheet2 = writer.sheets["details"]
    for idx, col in enumerate(detailsdf):
      series = detailsdf[col]
      max_len = max((
        series.astype(str).map(len).max(),
        len(str(series.name))
      )) + 1
      worksheet2.set_column(idx, idx, max_len)
  return outputPath


def visualize_image(final_bbox, final_preds, l_words, image,label2color):

      draw = ImageDraw.Draw(image)
      font = ImageFont.load_default()
      json_df = []

      for ix, (prediction, box) in enumerate(zip(final_preds, final_bbox)):
        if prediction is not None:
          predicted_label = iob_to_label(prediction).lower()
        if predicted_label not in ["others"]:
          draw.rectangle(box, outline=label2color[predicted_label])
          draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
        json_dict = {}
        json_dict['TEXT'] = l_words[ix]
        json_dict['LABEL'] = label2color[predicted_label]
        json_df.append(json_dict)
      return image, json_df

def rotate_image(image):
    extracted_text = pytesseract.image_to_string(image)
    # check if the image contains any text
    if not extracted_text:
        print("The image does not contain any text.")
        return None
    elif extracted_text.isspace():
        print("The image contains only spaces.")
        return None
    text = pytesseract.image_to_osd(image)
    angle = int(re.search('(?<=Rotate: )\d+', text).group(0))
    angle = 360 - angle
    rotated = ndimage.rotate(image, angle)
    data = Image.fromarray(rotated)
    return data


# correct the skewness of images
def correct_skew(image, delta=1, limit=5):
    def determine_score(arr, angle):
        data = inter.rotate(arr, angle, reshape=False, order=0)
        histogram = np.sum(data, axis=1, dtype=float)
        score = np.sum((histogram[1:] - histogram[:-1]) ** 2, dtype=float)
        return histogram, score

    # Convert the PIL Image object to a numpy array
    image = np.asarray(image.convert('L'), dtype=np.uint8)

    # Apply thresholding
    thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

    scores = []
    angles = np.arange(-limit, limit + delta, delta)
    for angle in angles:
        histogram, score = determine_score(thresh, angle)
        scores.append(score)
    best_angle = angles[scores.index(max(scores))]

    (h, w) = image.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, best_angle, 1.0)
    corrected = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, \
            borderMode=cv2.BORDER_REPLICATE)
    return best_angle, corrected


def removeBorders(img):
  result = img.copy()

  if len(result.shape) == 2:
      # if the input image is grayscale, convert it to BGR format
      result = cv2.cvtColor(result, cv2.COLOR_GRAY2BGR)

  gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY) # convert to grayscale
  thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

  # Remove horizontal lines
  horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (40,1))
  remove_horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
  cnts = cv2.findContours(remove_horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
  cnts = cnts[0] if len(cnts) == 2 else cnts[1]
  for c in cnts:
      cv2.drawContours(result, [c], -1, (255,255,255), 5)

  # Remove vertical lines
  vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,40))
  remove_vertical = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
  cnts = cv2.findContours(remove_vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
  cnts = cnts[0] if len(cnts) == 2 else cnts[1]
  for c in cnts:
      cv2.drawContours(result, [c], -1, (255,255,255), 5)

  return result

def color2label_except(label2color, excluded_labels):
    """
    Inversely maps colors to labels based on the provided label2color dictionary,
    excluding the specified labels.

    Args:
        label2color (dict): Dictionary mapping labels to colors.
        excluded_labels (list): List of labels to exclude.

    Returns:
        dict: Dictionary mapping colors to labels, excluding the specified labels.
    """
    # Filter out excluded labels from label2color dictionary
    filtered_label2color = {label: color for label, color in label2color.items() if label not in excluded_labels}

    # Invert the filtered label2color dictionary to create color2label mapping
    return {v: k for k, v in filtered_label2color.items()}


def add_dataframe(df_main,labels_repeating,label2color):
  col_name_map =color2label_except(label2color,labels_repeating)

  columns = list(col_name_map.values())
  data = {col:[] for col in columns}
  for i in df_main:
      for k, v in i.items():
          if k in col_name_map:
              data[col_name_map[k]].append(v)

  # join the list of strings for each column and convert to a dataframe
  for col in columns:
      data[col] = [' '.join(data[col])]
  df_upper = pd.DataFrame(data)
  key_value_pairs = []
  for col in df_upper.columns:
      key_value_pairs.append({'key': col, 'value': df_upper[col][0]})
  df_key_value = pd.DataFrame(key_value_pairs)
  # Extract the value from the containertype column
  # container_quantity = int(df_key_value[df_key_value['key'] == 'containertype']['value'].str.split("x").str[0])

  # # Add a new row to the DataFrame
  # df_key_value = df_key_value.append({'key': 'containerquantity', 'value': container_quantity}, ignore_index=True)

  # # Extract the desired value from the containertype column
  # df_key_value.loc[df_key_value['key'] == 'containertype', 'value'] = df_key_value.loc[df_key_value['key'] == 'containertype', 'value'].str.split("x").str[1]
  return df_key_value


import statistics

def id2label_row(s, id2label):
  if s in id2label.values():
      return s
  return id2label[s]

def dist_height(y1,y2):
  return abs(int(y1)- int(y2))


def mergeBoxes(df):
  xmin, ymin, xmax, ymax = [], [], [], []
  for i in range(df.shape[0]):
    box = df['bbox_column'].iloc[i]
    xmin.append(box[0])
    ymin.append(box[1])
    xmax.append(box[2])
    ymax.append(box[3])
  return [min(xmin), min(ymin), max(xmax), max(ymax)]


def transform_dataset(df, merge_labels):
  df_temp = df.iloc[merge_labels] # a duplicate df with only concerned rows
  df_temp.reset_index(drop = True, inplace = True)
  text = ' '.join(df_temp['scr_column'])
  bbox = mergeBoxes(df_temp)
  retain_index = merge_labels[0] #the first index is parent row
  df['scr_column'].iloc[retain_index] = text
  df['bbox_column'].iloc[retain_index] = bbox
  # keeping the first & removing rest
  df = df.loc[~df.index.isin(merge_labels[1:]), :]
  df.reset_index(drop = True, inplace = True)
  return df


def box_overlap(box1, box2, horizontal_vertical):
     # Extract coordinates of box1
    x1_box1, y1_box1, x2_box1, y2_box1 = box1
    # Extract coordinates of box2
    x1_box2, y1_box2, x2_box2, y2_box2 = box2

    # Check if boxes overlap horizontally and vertically
    if horizontal_vertical == "H":
      if x1_box1 <= x2_box2 and x2_box1 >= x1_box2:
        return True
      else:
        return False
    if horizontal_vertical == "V":
      if y1_box1 <= y2_box2 and y2_box1 >= y1_box2:
        return True
      else:
        return False


def horizonatal_merging(df, font_length, perform_overlapping =False, x_change = 0, y_change = 0):
  fat_df = df.copy()
  for i in range(df.shape[0]):
    box = fat_df['bbox_column'].iloc[i]
    fat_df['bbox_column'].iloc[i] = [box[0]-x_change, box[1]-y_change, box[2]+x_change, box[3] + y_change]
  if perform_overlapping == True:
    redundant_rows = []
    for i in range(fat_df.shape[0]):
      box_i = fat_df.bbox_column[i]
      indices2merge = []

      for j in range(i+1, fat_df.shape[0]):
        if fat_df.preds_column[j] == fat_df.preds_column[i]: # if labels are same
          box_j = fat_df.bbox_column[j]
          if abs(box_i[1]-box_j[3])<font_length*1.5: # if the boxes are at height within 50% more range of font size
            # Check if boxes overlap horizontally
            if box_overlap(box_i, box_j, 'H'):
              indices2merge.append(j)
              df.scr_column[i] += df.scr_column[j]
              box_i = fat_df.bbox_column[j]  # finding the next connected word

      #once we have all indices that belong to a particular category
      # merging the boundong boxes, keeping them in 1st note/row.
      if len(indices2merge)!=0:
        df['bbox_column'].iloc[i] = mergeBoxes(df.loc[indices2merge])
      redundant_rows.extend(indices2merge)

    #now since all the transformation is done, lets remove the redundant rows
    return df.drop(redundant_rows)


def mergeLabelsExtensive_repeating(df_grouped, repeating_label):
  df_grouped.reset_index(inplace = True, drop = True)
  # this function merges same label entities together in a single instance.
  df_grouped = df_grouped[df_grouped['preds_column'].isin(repeating_label)]
  font_length =0
  count = 0
  while count<5 and count<df_grouped.shape[0]:
    box_i = df_grouped['bbox_column'].iloc[count] # box of current label contains [x1,y1,x3,y3]
    font_length += box_i[3]-box_i[1]
    count +=1
  font_length = font_length/5

  df_grouped = horizonatal_merging(df_grouped, font_length, True, 30, 0)
  return df_grouped



def group_labels_wrt_height(df):
  """
  This function groups the labels based on the height of the bounding box.
  """
  #sorting the lines based on heights using column 'y_axis'
  df = df.sort_values(by='y_axis')
  df.reset_index(inplace = True, drop = True)
  print("entering: group_labels_wrt_height ")

  final_yaxis = []
  final_scr = []
  final_pred = []

  current_group = []
  current_scr = []
  current_pred = []


  # Iterate through the column values
  for i, (value,scr,preds ) in enumerate(zip(df['y_axis'], df['scr_column'], df['preds_column'])):
      if i == 0:
          # Start a new group with the first value
          current_group.append(value)
          current_scr.append(scr)
          current_pred.append(preds)
      else:
          # Check if the difference between the current value and the previous value is <= 20
          if abs(value - df['y_axis'][i - 1]) <= 35:
              # Add the value to the current group
              current_group.append(value)
              current_scr.append(scr)
              current_pred.append(preds)
          else:
              # Start a new group with the current value
              final_yaxis.append(current_group)
              final_scr.append(current_scr)
              final_pred.append(current_pred)

              current_group = [value]
              current_scr = [scr]
              current_pred = [preds]


  # Add the last group
  final_yaxis.append(current_group)
  final_scr.append(current_scr)
  final_pred.append(current_pred)

  final_grouped_df = pd.DataFrame({'y_axis': final_yaxis, 'scr_column': final_scr, 'preds_column': final_pred})

  print("Grouped df after sorting based on height")
  print_df(final_grouped_df)

  return final_grouped_df



# searches the set of labels in the whole range
def search_labelSet_height_range(df, d, keyList):
  print("search_labelSet_height_range")
  keyDict = dict.fromkeys(keyList, []) #stores the required information as dictonary, then coverted to df
  print("Dataframe from extraction is going to happen: ")

  for i in range(df.shape[0]): # search df for right-bottom y axis value and check if it lies within the range d.
    box = df['bbox_column'].iloc[i]
    if dist_height(box[1], d)<50:
      key = df['preds_column'].iloc[i]
      keyDict[key] = df['scr_column'].iloc[i]
  return keyDict


def clean_colText(df, column):
  for i in range(df.shape[0]):
    df[column].iloc[i] = df[column].iloc[i].replace('[', '').replace('|', '').replace('+', '')
  return df


def find_repeatingLabels(df, labels_repeating):
  print("In find_repeatingLabels: ")
  row2drop = [] # dropping the rows that have been covered in previous dataframe
  for i in range(df.shape[0]):
    df['preds_column'].iloc[i] = id2label_row(df['preds_column'].iloc[i], id2label)
    if df['preds_column'].iloc[i] not in labels_repeating:
      row2drop.append(i)
  df.drop(index = row2drop, inplace = True)
  df = clean_colText(df, 'scr_column')

  print("removing non-tabular labels.")

  df = mergeLabelsExtensive_repeating(df,labels_repeating)
  print('after merging non-tabular labels: ')

  labels_repeating = list(set(list(df["preds_column"])))
  print("labels_repeating in this document are: ",labels_repeating)
  # adding extra column that contains the Y-axis information (Height)
  df['y_axis'] = np.NaN
  for i in range(df.shape[0]):
    box = df['bbox_column'].iloc[i]
    df['y_axis'].iloc[i] = box[1]

  print("After adding y-axis data in the dataframes: ")
  df = mergeLabelsExtensive(df)
  print("aftermerging the df extensively")
  print("Grouping the labels wrt heights: ")
  grouped_df = group_labels_wrt_height(df)

  #once labels are grouped, now we will create dictionaries for labels and values occuring in single line
  row_dicts = [] # will contains each row of df as single dictionary.
  for _, row in grouped_df.iterrows():
      row_dict = {}
      for preds, scr in zip(row['preds_column'], row['scr_column']):
          row_dict[preds] = scr
      row_dicts.append(row_dict)

  #creating new
  final_df = pd.DataFrame(columns=labels_repeating)
  for d in row_dicts:
    final_df = final_df.append(d, ignore_index=True)
  final_df = final_df.fillna('')
  return final_df


def mergeImageVertical(images):
   # pick the image which is the smallest, and resize the others to match it (can be arbitrary image shape here)
  min_shape = sorted( [(np.sum(i.size), i.size ) for i in images])[0][1]
  imgs_comb = np.hstack([i.resize(min_shape) for i in images])
  # for a vertical stacking it is simple: use vstack
  imgs_comb = np.vstack([i.resize(min_shape) for i in images])
  imgs_comb = Image.fromarray(imgs_comb)
  return imgs_comb

def perform_erosion(img):
    # Check if the image is already in grayscale
    if len(img.shape) == 2:
        gray = img
    else:
        # Convert the image to grayscale
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Define the kernel for erosion and dilation
    kernel = np.ones((3, 3), np.uint8)

    # Perform erosion followed by dilation
    erosion = cv2.erode(gray, kernel, iterations=1)
    dilation = cv2.dilate(erosion, kernel, iterations=1)

    # Double the size of the image
    double_size = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)

    # Perform erosion on the doubled image
    double_erosion = cv2.erode(double_size, kernel, iterations=1)

    return double_erosion



def remove_leading_trailing_special_characters(input_string):
    cleaned_string = re.sub(r'^[^A-Za-z0-9]+|[^A-Za-z0-9]+$', '', str(input_string))
    return cleaned_string

def clean_dataframe(df):
    # Apply the remove_leading_trailing_special_characters function to all string columns
    for column in df.select_dtypes(include='object').columns:
        df[column] = df[column].apply(remove_leading_trailing_special_characters)

    # Remove rows with all NaN or blank values
    df = df.fillna('')  # Replace NaN values with blank
    return df

def mergeLabelsExtensive(df_grouped):
  i = 0
  while i < df_grouped.shape[0]:
    merge_labels = [i] # collects indices whose data has been merged, so we need to delete it now.
    label = df_grouped['preds_column'].iloc[i]
    box1 = df_grouped['bbox_column'].iloc[i]

    for j in range(i+1, df_grouped.shape[0]):
      box2 = df_grouped['bbox_column'].iloc[j]
      if label == df_grouped['preds_column'].iloc[j] and dist_height(box1[3], box2[3])<20: # which are in the vicinity of 20 pixels.
        merge_labels.append(j)
    print_df(df_grouped)
    df_grouped = transform_dataset(df_grouped, merge_labels)
    i = i+1
  return df_grouped

def multilabelsHandle(df, thermo_details):
  # Since 0 is assigned to 'others' and these values are not so important. We delete these values.
  df = df[df.preds_column != 0]
  df.reset_index(drop=True, inplace=True)
  for i in range(df.shape[0]):
    df['preds_column'].iloc[i] = id2label.get(df['preds_column'].iloc[i])
  df['preds_column'].unique()
  df_grouped = df.copy() #stores the index of relevant labels.
  df_grouped.shape[0]
  for i in range(df.shape[0]):
    if df['preds_column'].iloc[i] not in thermo_details:
      df_grouped.drop(i, inplace = True)
  df_grouped.reset_index(drop=True, inplace=True)

  keyList = df_grouped['preds_column'].unique()
  df_grouped = mergeLabelsExtensive(df_grouped)

  # extract the height of boxes
  df_grouped = extract_yaxis(df_grouped)
  shipment_labels = ['delivery_name','delivery_address','contact_phone']
  # shipment
  heights_shipment = get_heights(df_grouped, shipment_labels)

  # now segregating the other repeating values in df like measiure, weight, volume etc.
  # they will be containeed within the heights, as they act as boudaries.
  df_labelSet = pd.DataFrame(columns= thermo_details)
  for i in range(len(heights_shipment)):
    if i == len(heights_shipment)-1:
      new_df = search_labelSet_between_h1_h2(df_grouped, heights_shipment[i],  5000, keyList)
    else:
      new_df = search_labelSet_between_h1_h2(df_grouped, heights_shipment[i],  heights_shipment[i+1], keyList)
    df_labelSet = df_labelSet.append(new_df, ignore_index=True)
  return df_labelSet


def completepreprocess(pdffile,ocr_type):
  myDataFrame = pd.DataFrame()
  myDataFrame2 = pd.DataFrame()
  merge_pages=[]
  doc = fitz.open(pdffile)
  for i in range(0, len(doc)):
    page = doc.load_page(i)
    zoom = 2
    mat = fitz.Matrix(zoom, zoom)
    pix = page.get_pixmap(matrix = mat, dpi = 300)
    image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
    ro_image = rotate_image(image)
    if ro_image is None:
      return None
    angle, skewed_image = correct_skew(ro_image)
    if skewed_image is None:
      return None
    remove_border = removeBorders(skewed_image)
    image = Image.fromarray(remove_border)
    width,height=image.size
    label2color = generate_unique_colors(id2label)
    width,height=image.size
    if ocr_type == "GoogleVisionOCR":
        words, boxes = process_image_GoogleVision(image, width, height)
    else:
        words, boxes = process_image_pytesseract(image, width, height)

    bbox, preds, words, image = process_image_encoding(model, processor, image, words, boxes,width,height)
    im, df_visualize = visualize_image(bbox, preds, words, image,label2color)
    df_main = process_form_(df_visualize)

    bbox_column = bbox
    preds_column = preds
    scr_column = words

    # dictionary of lists
    dict = {'bbox_column': bbox_column, 'preds_column': preds_column, 'scr_column': scr_column}
    df_single_page = pd.DataFrame(dict)
    labels_repeating = ['art_code', 'ref_code', 'detail_desc','lot_id','detail_qty','detail_um','detail_tare','detail_grossw','detail_netw','detail_origin','varieta','raccolta']
    df_repeating_page = find_repeatingLabels(df_single_page, labels_repeating)
    myDataFrame2= myDataFrame2.append(df_repeating_page,sort=False)

    df1=add_dataframe(df_main,labels_repeating,label2color).astype(str)
    myDataFrame= myDataFrame.append(df1,sort=False).reset_index(drop = True)
    myDataFrame['value'].apply(len)
    row2drop = []
    for i in range(myDataFrame.shape[0]):
      if len( myDataFrame['value'].iloc[i]) ==0:
        row2drop.append(i)
    myDataFrame.drop(index = row2drop, inplace = True)
    myDataFrame.reset_index(drop = True, inplace = True)
    myDataFrame = myDataFrame[myDataFrame["value"].notnull()]
    myDataFrame.drop_duplicates(subset=["key"],inplace=True)
    myDataFrame2 = myDataFrame2.loc[:, ~(myDataFrame2.apply(lambda x: all(isinstance(val, list) and len(val) == 0 for val in x)))]
    merge_pages.append(im)
  im2=mergeImageVertical(merge_pages)
  myDataFrame2 = clean_dataframe(myDataFrame2)
  myDataFrame = clean_dataframe(myDataFrame)
  myDataFrame = myDataFrame[myDataFrame['key'] != 'others']
  output_excel_path = createExcel(myDataFrame, myDataFrame2, pdffile.name)
  return im2,myDataFrame,myDataFrame2,output_excel_path


title = "Interactive demo: Document Information Extraction model PDF/Images"
description = "Upload your own document, or use the one given below at the left corner. Results will show up in a few seconds. The annotated image can be opened in a new window for a better view."

css = """.output_image, .input_image {height: 600px !important}"""
examples = [["sample_doc.pdf"]]
           
iface = gr.Interface(
    fn=completepreprocess,
    inputs=[
        gr.components.File(label="PDF"),
        gr.components.Dropdown(label="Select the OCR", choices=["Pytesseract","GoogleVisionOCR"]),
    ],
    outputs=[
        gr.components.Image(type="pil", label="annotated image"),
        "dataframe",
        "dataframe"
        #gr.File(label="Excel output")
    ],
    title=title,
    description=description,
    examples=examples,
    css=css
)

iface.launch(inline=True, debug=True)