Spaces:
Sleeping
Sleeping
added alignscore and removed bleurt
Browse files- app.py +1 -1
- generation_evaluator.py +53 -26
- gradio_tst.py +21 -11
- requirements.txt +4 -2
app.py
CHANGED
@@ -2,4 +2,4 @@ import evaluate
|
|
2 |
from gradio_tst import launch_gradio_widget2
|
3 |
|
4 |
module = evaluate.load("generation_evaluator.py")
|
5 |
-
launch_gradio_widget2(module)
|
|
|
2 |
from gradio_tst import launch_gradio_widget2
|
3 |
|
4 |
module = evaluate.load("generation_evaluator.py")
|
5 |
+
launch_gradio_widget2(module)
|
generation_evaluator.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import datasets
|
2 |
import evaluate
|
3 |
import numpy as np
|
|
|
|
|
4 |
|
5 |
_CITATION = """\
|
6 |
@inproceedings{lin-2004-rouge,
|
@@ -77,10 +79,8 @@ Moreover, BERTScore computes precision, recall, and F1 measure, which can be use
|
|
77 |
generation tasks.
|
78 |
See the project's README at https://github.com/Tiiiger/bert_score#readme for more information.
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
it for your specific application (the latter is expected to perform better).
|
83 |
-
See the project's README at https://github.com/google-research/bleurt#readme for more information.
|
84 |
|
85 |
ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,
|
86 |
and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation
|
@@ -119,8 +119,8 @@ BERT_SCORE:{
|
|
119 |
"f1": F1 score.
|
120 |
"hashcode": Hashcode of the library.
|
121 |
},
|
122 |
-
|
123 |
-
"
|
124 |
},
|
125 |
CHRF:{
|
126 |
'score' (float): The chrF (chrF++) score,
|
@@ -130,6 +130,14 @@ CHRF:{
|
|
130 |
}
|
131 |
"""
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
class GenerationEvaluator(evaluate.Metric):
|
135 |
def _info(self):
|
@@ -152,52 +160,71 @@ class GenerationEvaluator(evaluate.Metric):
|
|
152 |
],
|
153 |
)
|
154 |
|
155 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
|
|
157 |
rouge_score = evaluate.load("rouge")
|
158 |
|
159 |
rouge_results = rouge_score.compute(
|
160 |
predictions=predictions, references=references
|
161 |
)
|
|
|
|
|
162 |
bleu_score = evaluate.load("bleu")
|
163 |
bleu_results = bleu_score.compute(
|
164 |
predictions=predictions, references=references
|
165 |
)
|
166 |
|
|
|
167 |
exact_match_score = evaluate.load("exact_match")
|
168 |
exact_match_results = exact_match_score.compute(
|
169 |
predictions=predictions, references=references
|
170 |
)
|
171 |
|
|
|
172 |
bert_score = evaluate.load("bertscore")
|
173 |
bert_score_results = bert_score.compute(
|
174 |
predictions=predictions, references=references, lang="en"
|
175 |
)
|
176 |
-
|
177 |
-
mean_precision = np.mean(bert_score_results[
|
178 |
-
mean_recall = np.mean(bert_score_results[
|
179 |
-
mean_f1 = np.mean(bert_score_results[
|
180 |
-
|
181 |
-
bert_score_results[
|
182 |
-
bert_score_results[
|
183 |
-
bert_score_results[
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
188 |
)
|
189 |
-
|
190 |
-
|
191 |
-
bleurt_results['scores'] = round(mean_bleurt_score, 4)
|
192 |
-
|
193 |
chrf = evaluate.load("chrf")
|
194 |
-
chrf_results = chrf.compute(
|
|
|
|
|
195 |
|
196 |
return {
|
197 |
"ROUGE": rouge_results,
|
198 |
"BLEU": bleu_results,
|
199 |
"EXACT_MATCH": exact_match_results,
|
200 |
"BERT_SCORE": bert_score_results,
|
201 |
-
"
|
202 |
-
"
|
203 |
}
|
|
|
1 |
import datasets
|
2 |
import evaluate
|
3 |
import numpy as np
|
4 |
+
import spacy
|
5 |
+
from alignscore import AlignScore
|
6 |
|
7 |
_CITATION = """\
|
8 |
@inproceedings{lin-2004-rouge,
|
|
|
79 |
generation tasks.
|
80 |
See the project's README at https://github.com/Tiiiger/bert_score#readme for more information.
|
81 |
|
82 |
+
AlignScore evaluates whether all the information in b is contained in a (b does not contradict a).
|
83 |
+
See https://github.com/yuh-zha/AlignScore for more information.
|
|
|
|
|
84 |
|
85 |
ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,
|
86 |
and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation
|
|
|
119 |
"f1": F1 score.
|
120 |
"hashcode": Hashcode of the library.
|
121 |
},
|
122 |
+
AlignScore:{
|
123 |
+
"score": mean align scores using roberta-large as scorer
|
124 |
},
|
125 |
CHRF:{
|
126 |
'score' (float): The chrF (chrF++) score,
|
|
|
130 |
}
|
131 |
"""
|
132 |
|
133 |
+
ALIGNSCORE_ARGS = {
|
134 |
+
"model": "roberta-large",
|
135 |
+
"batch_size": 32,
|
136 |
+
"device": "cuda",
|
137 |
+
"ckpt_path": "https://huggingface.co/yzha/AlignScore/resolve/main/AlignScore-large.ckpt",
|
138 |
+
"evaluation_mode": "nli_sp",
|
139 |
+
}
|
140 |
+
|
141 |
|
142 |
class GenerationEvaluator(evaluate.Metric):
|
143 |
def _info(self):
|
|
|
160 |
],
|
161 |
)
|
162 |
|
163 |
+
def _download_and_prepare(self, dl_manager):
|
164 |
+
# Download Spacy en_core_web_sm model for AlignScore
|
165 |
+
try:
|
166 |
+
spacy.load("en_core_web_sm")
|
167 |
+
except OSError:
|
168 |
+
spacy.cli.download("en_core_web_sm")
|
169 |
+
|
170 |
+
# Download AlignScore checkpoint
|
171 |
+
model_path = dl_manager.download(ALIGNSCORE_ARGS["ckpt_path"])
|
172 |
+
ALIGNSCORE_ARGS["ckpt_path"] = model_path
|
173 |
+
self.align_scorer = AlignScore(**ALIGNSCORE_ARGS)
|
174 |
|
175 |
+
def _compute(self, predictions, references):
|
176 |
+
# Compute ROUGE
|
177 |
rouge_score = evaluate.load("rouge")
|
178 |
|
179 |
rouge_results = rouge_score.compute(
|
180 |
predictions=predictions, references=references
|
181 |
)
|
182 |
+
|
183 |
+
# Compute BLEU
|
184 |
bleu_score = evaluate.load("bleu")
|
185 |
bleu_results = bleu_score.compute(
|
186 |
predictions=predictions, references=references
|
187 |
)
|
188 |
|
189 |
+
# Compute Exact Match
|
190 |
exact_match_score = evaluate.load("exact_match")
|
191 |
exact_match_results = exact_match_score.compute(
|
192 |
predictions=predictions, references=references
|
193 |
)
|
194 |
|
195 |
+
# Compute BERTScore
|
196 |
bert_score = evaluate.load("bertscore")
|
197 |
bert_score_results = bert_score.compute(
|
198 |
predictions=predictions, references=references, lang="en"
|
199 |
)
|
200 |
+
|
201 |
+
mean_precision = np.mean(bert_score_results["precision"])
|
202 |
+
mean_recall = np.mean(bert_score_results["recall"])
|
203 |
+
mean_f1 = np.mean(bert_score_results["f1"])
|
204 |
+
|
205 |
+
bert_score_results["precision"] = round(mean_precision, 4)
|
206 |
+
bert_score_results["recall"] = round(mean_recall, 4)
|
207 |
+
bert_score_results["f1"] = round(mean_f1, 4)
|
208 |
+
|
209 |
+
# Compute AlignScore
|
210 |
+
align_score = round(
|
211 |
+
np.mean(
|
212 |
+
self.align_scorer.score(contexts=references, claims=predictions)
|
213 |
+
),
|
214 |
+
4,
|
215 |
)
|
216 |
+
|
217 |
+
# Compute CHRF
|
|
|
|
|
218 |
chrf = evaluate.load("chrf")
|
219 |
+
chrf_results = chrf.compute(
|
220 |
+
predictions=predictions, references=references
|
221 |
+
)
|
222 |
|
223 |
return {
|
224 |
"ROUGE": rouge_results,
|
225 |
"BLEU": bleu_results,
|
226 |
"EXACT_MATCH": exact_match_results,
|
227 |
"BERT_SCORE": bert_score_results,
|
228 |
+
"CHRF": chrf_results,
|
229 |
+
"ALIGN_SCORE": align_score,
|
230 |
}
|
gradio_tst.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import json
|
|
|
2 |
import os
|
3 |
import re
|
4 |
import sys
|
@@ -7,10 +8,6 @@ from pathlib import Path
|
|
7 |
import numpy as np
|
8 |
from datasets import Value
|
9 |
|
10 |
-
import logging
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
|
15 |
|
16 |
|
@@ -27,7 +24,9 @@ def infer_gradio_input_types(feature_types):
|
|
27 |
for feature_type in feature_types:
|
28 |
input_type = "json"
|
29 |
if isinstance(feature_type, Value):
|
30 |
-
if feature_type.dtype.startswith(
|
|
|
|
|
31 |
input_type = "number"
|
32 |
elif feature_type.dtype == "string":
|
33 |
input_type = "str"
|
@@ -59,9 +58,13 @@ def parse_gradio_data(data, input_types):
|
|
59 |
data.dropna(inplace=True)
|
60 |
for feature_name, input_type in zip(data, input_types):
|
61 |
if input_type == "json":
|
62 |
-
metric_inputs[feature_name] = [
|
|
|
|
|
63 |
elif input_type == "str":
|
64 |
-
metric_inputs[feature_name] = [
|
|
|
|
|
65 |
else:
|
66 |
metric_inputs[feature_name] = data[feature_name]
|
67 |
return metric_inputs
|
@@ -79,9 +82,13 @@ def parse_test_cases(test_cases, feature_names, input_types):
|
|
79 |
parsed_cases = []
|
80 |
for feat, input_type in zip(feature_names, input_types):
|
81 |
if input_type == "json":
|
82 |
-
parsed_cases.append(
|
|
|
|
|
83 |
elif input_type == "str":
|
84 |
-
parsed_cases.append(
|
|
|
|
|
85 |
else:
|
86 |
parsed_cases.append(test_case[feat])
|
87 |
examples.append([list(i) for i in zip(*parsed_cases)])
|
@@ -94,7 +101,9 @@ def launch_gradio_widget2(metric):
|
|
94 |
try:
|
95 |
import gradio as gr
|
96 |
except ImportError as error:
|
97 |
-
logging.error(
|
|
|
|
|
98 |
raise error
|
99 |
|
100 |
local_path = Path(sys.path[0])
|
@@ -118,7 +127,8 @@ def launch_gradio_widget2(metric):
|
|
118 |
),
|
119 |
outputs=gr.Textbox(label=metric.name),
|
120 |
description=(
|
121 |
-
metric.info.description
|
|
|
122 |
" Alternatively you can use a JSON-formatted list as input."
|
123 |
),
|
124 |
title=f"Metric: {metric.name}",
|
|
|
1 |
import json
|
2 |
+
import logging
|
3 |
import os
|
4 |
import re
|
5 |
import sys
|
|
|
8 |
import numpy as np
|
9 |
from datasets import Value
|
10 |
|
|
|
|
|
|
|
|
|
11 |
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
|
12 |
|
13 |
|
|
|
24 |
for feature_type in feature_types:
|
25 |
input_type = "json"
|
26 |
if isinstance(feature_type, Value):
|
27 |
+
if feature_type.dtype.startswith(
|
28 |
+
"int"
|
29 |
+
) or feature_type.dtype.startswith("float"):
|
30 |
input_type = "number"
|
31 |
elif feature_type.dtype == "string":
|
32 |
input_type = "str"
|
|
|
58 |
data.dropna(inplace=True)
|
59 |
for feature_name, input_type in zip(data, input_types):
|
60 |
if input_type == "json":
|
61 |
+
metric_inputs[feature_name] = [
|
62 |
+
json.loads(d) for d in data[feature_name].to_list()
|
63 |
+
]
|
64 |
elif input_type == "str":
|
65 |
+
metric_inputs[feature_name] = [
|
66 |
+
d.strip('"') for d in data[feature_name].to_list()
|
67 |
+
]
|
68 |
else:
|
69 |
metric_inputs[feature_name] = data[feature_name]
|
70 |
return metric_inputs
|
|
|
82 |
parsed_cases = []
|
83 |
for feat, input_type in zip(feature_names, input_types):
|
84 |
if input_type == "json":
|
85 |
+
parsed_cases.append(
|
86 |
+
[str(element) for element in test_case[feat]]
|
87 |
+
)
|
88 |
elif input_type == "str":
|
89 |
+
parsed_cases.append(
|
90 |
+
['"' + element + '"' for element in test_case[feat]]
|
91 |
+
)
|
92 |
else:
|
93 |
parsed_cases.append(test_case[feat])
|
94 |
examples.append([list(i) for i in zip(*parsed_cases)])
|
|
|
101 |
try:
|
102 |
import gradio as gr
|
103 |
except ImportError as error:
|
104 |
+
logging.error(
|
105 |
+
"To create a metric widget with Gradio make sure gradio is installed."
|
106 |
+
)
|
107 |
raise error
|
108 |
|
109 |
local_path = Path(sys.path[0])
|
|
|
127 |
),
|
128 |
outputs=gr.Textbox(label=metric.name),
|
129 |
description=(
|
130 |
+
metric.info.description
|
131 |
+
+ "\nIf this is a text-based metric, make sure to wrap you input in double quotes."
|
132 |
" Alternatively you can use a JSON-formatted list as input."
|
133 |
),
|
134 |
title=f"Metric: {metric.name}",
|
requirements.txt
CHANGED
@@ -3,7 +3,9 @@ datasets
|
|
3 |
scikit-learn
|
4 |
gradio
|
5 |
bert_score
|
6 |
-
|
7 |
numpy
|
8 |
git+https://github.com/huggingface/evaluate@a4bdc10c48a450b978d91389a48dbb5297835c7d
|
9 |
-
sacrebleu
|
|
|
|
|
|
3 |
scikit-learn
|
4 |
gradio
|
5 |
bert_score
|
6 |
+
rouge_score
|
7 |
numpy
|
8 |
git+https://github.com/huggingface/evaluate@a4bdc10c48a450b978d91389a48dbb5297835c7d
|
9 |
+
sacrebleu
|
10 |
+
git+ssh://[email protected]/yuh-zha/AlignScore.git
|
11 |
+
spacy
|