File size: 3,785 Bytes
3be49b0 ce1cea6 3be49b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from scipy.interpolate import interp1d
import os
import uuid
def calculate_intensity(image):
"""
Calculate the intensity of the image by converting it to grayscale
and taking the mean value.
"""
gray_image = image.convert('L') # Convert to grayscale
intensity = np.mean(np.array(gray_image))
return intensity
def process_image(image_path):
"""
Process the image by dividing it into 32x32 grids and calculating normalized intensity.
"""
# Open the image
image = Image.open(image_path)
width, height = image.size
# Determine the ideal grid size
grid_width = width // 32
grid_height = height // 32
intensities = []
# Divide the image into grids and calculate intensity for each grid
for y in range(32):
row_intensities = []
for x in range(32):
left = x * grid_width
upper = y * grid_height
right = left + grid_width
lower = upper + grid_height
# Crop the image to the grid
grid = image.crop((left, upper, right, lower))
intensity = calculate_intensity(grid)
row_intensities.append(intensity)
intensities.append(row_intensities)
intensities = np.array(intensities)
# Normalize the intensities to the range 0-1
min_intensity = intensities.min()
max_intensity = intensities.max()
normalized_intensities = (intensities - min_intensity) / (max_intensity - min_intensity)
return normalized_intensities
def intensity_to_oxygen_level(normalized_intensities):
"""
Map normalized intensity values to oxygen levels using interpolation.
"""
# Provided mapping table
ksv_values = [0, 0.009303080328, 0.19176, 0.5196879311, 0.6252571452, 0.7115134738,
0.8476158622, 0.9531850764, 1.039441405, 1.145010619, 1.175543793,
1.231266948, 1.281113007, 1.47293855, 1.609040939]
oxygen_levels = [0, 0.68, 1, 2, 2.5, 3, 4, 5, 6, 7.5, 8, 9, 10, 15, 20]
# Normalize intensities to match the range of Ksv values
min_ksv = min(ksv_values)
max_ksv = max(ksv_values)
normalized_intensities = (normalized_intensities * (max_ksv - min_ksv)) + min_ksv
# Interpolation function
interp_func = interp1d(ksv_values, oxygen_levels, kind='linear', fill_value='extrapolate')
oxygen_levels_mapped = interp_func(normalized_intensities)
return oxygen_levels_mapped
def generate_heatmap(data, output_path):
"""
Generate a high-resolution heatmap from data and save it as an image.
"""
plt.figure(figsize=(10, 8))
plt.imshow(data, cmap='hot', interpolation='nearest', norm=mcolors.Normalize(vmin=0, vmax=20))
plt.colorbar(label='Oxygen Level (%)')
# Save the figure with high resolution
plt.savefig(output_path, dpi=300)
plt.close()
def process_and_generate_heatmap(image):
"""
Process the image and generate a heatmap, saving the result to a file.
"""
# Generate a unique name for the input image
unique_id = str(uuid.uuid4())
input_dir = 'Gradio_Images'
input_image_path = os.path.join(input_dir, f'uploaded_image_{unique_id}.jpg')
image.save(input_image_path)
# Process the image to get normalized intensities
normalized_intensities = process_image(input_image_path)
oxygen_levels = intensity_to_oxygen_level(normalized_intensities)
# Generate the output path for the heatmap based on the unique name
output_dir = 'Heatmap_Images'
output_image_path = os.path.join(output_dir, f'heatmap_{unique_id}.jpg')
generate_heatmap(oxygen_levels, output_image_path)
return output_image_path
|