File size: 6,636 Bytes
030a0f8 147f159 030a0f8 ffdcf9b 92ec35a e7e873a 030a0f8 c3ce809 bf20d4a ffdcf9b c3ce809 ab5a12a c3ce809 030a0f8 7e5a783 ffdcf9b d29599d ffdcf9b 92ec35a ffdcf9b 92ec35a c3ce809 030a0f8 c3ce809 030a0f8 c3ce809 030a0f8 147f159 47f9ff2 c3ce809 47f9ff2 c641c56 c3ce809 bf20d4a c3ce809 f3b65af c3ce809 cf0fa8b 92ec35a 71691d8 8e6ce41 cf0fa8b 030a0f8 b5251fc 030a0f8 87f68f3 cce302e b5251fc 87f68f3 f8687db 0447220 030a0f8 367e85c 030a0f8 b5251fc 030a0f8 96c87f9 030a0f8 d320fdd 47f9ff2 d320fdd e15d353 030a0f8 47f9ff2 53cf441 47f9ff2 333ca76 53cf441 030a0f8 8aae6e9 7e5a783 d320fdd 8aae6e9 030a0f8 9dc62b8 030a0f8 d2c745e 030a0f8 47f9ff2 8aae6e9 030a0f8 d2c745e 030a0f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
from typing import Tuple
import streamlit as st
import torch
import transformers
from transformers import AutoConfig
import tokenizers
from sampling import CAIFSampler, TopKWithTemperatureSampler
from generator import Generator
import pickle
from plotly import graph_objects as go
import numpy as np
device = "cuda" if torch.cuda.is_available() else "cpu"
ATTRIBUTE_MODELS = {
"Russian": (
"cointegrated/rubert-tiny-toxicity",
'tinkoff-ai/response-quality-classifier-tiny',
'tinkoff-ai/response-quality-classifier-base',
'tinkoff-ai/response-quality-classifier-large',
"SkolkovoInstitute/roberta_toxicity_classifier",
"SkolkovoInstitute/russian_toxicity_classifier"
),
"English": (
"unitary/toxic-bert",
)
}
LANGUAGE_MODELS = {
"Russian": (
'sberbank-ai/rugpt3small_based_on_gpt2',
"sberbank-ai/rugpt3large_based_on_gpt2"
),
"English": ("gpt2", "distilgpt2", "EleutherAI/gpt-neo-1.3B")
}
ATTRIBUTE_MODEL_LABEL = {
"Russian": 'Выберите модель классификации',
"English": "Choose attribute model"
}
LM_LABEL = {
"English": "Choose language model",
"Russian": "Выберите языковую модель"
}
ATTRIBUTE_LABEL = {
"Russian": "Веберите нужный атрибут текста",
"English": "Choose desired attribute",
}
TEXT_PROMPT_LABEL = {
"English": "Text prompt",
"Russian": "Начало текста"
}
PROMPT_EXAMPLE = {
"English": "Hello, today I want to show you a new method",
"Russian": "Привет, сегодня я"
}
def main():
st.header("CAIF")
with open("entropy_cdf.pkl", "rb") as inp:
x_s, y_s = pickle.load(inp)
scatter = go.Scatter({
"x": x_s,
"y": y_s,
"name": "GPT2",
"mode": "lines",
}
)
layout = go.Layout({
"yaxis": {
"title": "Speedup",
"tickvals": [0, 0.5, 0.8, 1],
"ticktext": ["1x", "2x", "5x", "10x"]
},
"xaxis": {"title": "Entropy threshold"},
"template": "plotly_white",
})
language = st.selectbox("Language", ("English", "Russian"))
cls_model_name = st.selectbox(
ATTRIBUTE_MODEL_LABEL[language],
ATTRIBUTE_MODELS[language]
)
lm_model_name = st.selectbox(
LM_LABEL[language],
LANGUAGE_MODELS[language]
)
cls_model_config = AutoConfig.from_pretrained(cls_model_name)
if cls_model_config.problem_type == "multi_label_classification":
label2id = cls_model_config.label2id
label_key = st.selectbox(ATTRIBUTE_LABEL[language], label2id.keys())
target_label_id = label2id[label_key]
else:
label2id = cls_model_config.label2id
print(list(label2id.keys()))
label_key = st.selectbox(ATTRIBUTE_LABEL[language], [list(label2id.keys())[-1]])
target_label_id = 1
prompt = st.text_input(TEXT_PROMPT_LABEL[language], PROMPT_EXAMPLE[language])
st.latex(r"p(x_i|x_{<i}, c) \propto p(x_i|x_{<i})p(c|x_{\leq i})^{\alpha}")
alpha = st.slider("Alpha", min_value=-10, max_value=10, step=1, value=0)
entropy_threshold = st.slider("Entropy threshold", min_value=0., max_value=10., step=.1, value=2.)
plot_idx = np.argmin(np.abs(entropy_threshold - x_s))
scatter_tip = go.Scatter({
"x": [x_s[plot_idx]],
"y": [y_s[plot_idx]],
"mode": "markers"
})
scatter_tip_lines = go.Scatter({
"x": [0, x_s[plot_idx]],
"y": [y_s[plot_idx]] * 2,
"mode": "lines",
"line": {
"color": "grey",
"dash": "dash"
}
})
figure = go.Figure(data=[scatter, scatter_tip, scatter_tip_lines], layout=layout)
figure.update_layout(paper_bgcolor="#FFFFFF", plot_bgcolor='#FFFFFF', showlegend=False)
st.plotly_chart(figure, use_container_width=True)
auth_token = os.environ.get('TOKEN') or True
fp16 = st.checkbox("FP16", value=True)
with st.spinner('Running inference...'):
text = inference(
lm_model_name=lm_model_name,
cls_model_name=cls_model_name,
prompt=prompt,
alpha=alpha,
target_label_id=target_label_id,
entropy_threshold=entropy_threshold,
fp16=fp16,
)
st.subheader("Generated text:")
st.write(text)
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_generator(lm_model_name: str) -> Generator:
with st.spinner('Loading language model...'):
generator = Generator(lm_model_name=lm_model_name, device=device)
return generator
#@st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_sampler(cls_model_name, lm_tokenizer):
with st.spinner('Loading classifier model...'):
sampler = CAIFSampler(classifier_name=cls_model_name, lm_tokenizer=lm_tokenizer, device=device)
return sampler
@st.cache
def inference(
lm_model_name: str,
cls_model_name: str,
prompt: str,
fp16: bool = True,
alpha: float = 5,
target_label_id: int = 0,
entropy_threshold: float = 0
) -> str:
torch.set_grad_enabled(False)
generator = load_generator(lm_model_name=lm_model_name)
lm_tokenizer = transformers.AutoTokenizer.from_pretrained(lm_model_name)
if alpha != 0:
caif_sampler = load_sampler(cls_model_name=cls_model_name, lm_tokenizer=lm_tokenizer)
if entropy_threshold < 0.05:
entropy_threshold = None
else:
caif_sampler = None
entropy_threshold = None
generator.set_caif_sampler(caif_sampler)
ordinary_sampler = TopKWithTemperatureSampler()
kwargs = {
"top_k": 20,
"temperature": 1.0,
"top_k_classifier": 100,
"classifier_weight": alpha,
"target_cls_id": target_label_id
}
generator.set_ordinary_sampler(ordinary_sampler)
if device == "cpu":
autocast = torch.cpu.amp.autocast
else:
autocast = torch.cuda.amp.autocast
with autocast(fp16):
print(f"Generating for prompt: {prompt}")
sequences, tokens = generator.sample_sequences(
num_samples=1,
input_prompt=prompt,
max_length=20,
caif_period=1,
entropy=entropy_threshold,
**kwargs
)
print(f"Output for prompt: {sequences}")
return sequences[0]
if __name__ == "__main__":
main()
|