File size: 5,238 Bytes
030a0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d320fdd
030a0f8
 
d320fdd
030a0f8
 
 
 
 
 
 
 
 
 
 
d320fdd
 
030a0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d320fdd
030a0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d320fdd
030a0f8
 
 
 
 
 
 
 
d320fdd
030a0f8
 
 
 
 
 
 
 
 
d320fdd
030a0f8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
from torch.nn import functional as F

import transformers


def sample_from_values(unscaled_probs, values):
    samples = torch.multinomial(unscaled_probs, 1)
    return torch.take_along_dim(values, samples, dim=1)


class TopKWithTemperatureSampler:
    def __call__(self, input_ids, output_logits, top_k, temperature, **kwargs):

        next_token_logits = output_logits[:, -1]
        next_token_log_probs = F.log_softmax(
            next_token_logits, dim=-1
        )

        topk_log_probs = next_token_log_probs.topk(top_k, -1)
        next_tokens = sample_from_values(
            torch.exp(topk_log_probs[0] / temperature), topk_log_probs[1]
        ).squeeze(1)

        return next_tokens


class CAIFSampler:
    def __init__(self, classifier_name, lm_tokenizer, device, invert_cls_probs: bool = False):
        self.device = device
        self.classifier_tokenizer = transformers.AutoTokenizer.from_pretrained(
            classifier_name
        )
        self.classifier_model = (
            transformers.AutoModelForSequenceClassification.from_pretrained(
                classifier_name
            ).to(device)
        )
        self.classifier_model.eval()
        self.lm_tokenizer = lm_tokenizer
        self.invert_cls_probs = invert_cls_probs

    def __call__(
        self,
        input_ids,
        output_logis,
        top_k,
        temperature,
        top_k_classifier,
        classifier_weight,
        caif_tokens_num=None,
        act_type: str = "softmax",
        **kwargs
    ):
        target_cls_id = kwargs["target_cls_id"]
        next_token_logits = output_logis[:, -1]
        next_token_log_probs = F.log_softmax(
            next_token_logits, dim=-1
        )

        (next_token_unnormalized_probs, topk_indices,) = self.get_unnormalized_probs(
            input_ids,
            next_token_log_probs,
            temperature,
            top_k_classifier,
            classifier_weight,
            caif_tokens_num=caif_tokens_num,
            target_cls_id=target_cls_id
        )
        topk_probs = next_token_unnormalized_probs.topk(top_k, -1)
        next_tokens = sample_from_values(
            topk_probs[0],
            torch.take_along_dim(topk_indices, topk_probs[1], dim=1),
        ).squeeze(1)

        return next_tokens

    def get_unnormalized_probs(
        self,
        input_ids,
        next_token_log_probs,
        temperature,
        top_k_classifier,
        classifier_weight,
        target_cls_id: int = 0,
        caif_tokens_num=None
    ):

        if classifier_weight == 0.0:
            raise ValueError(
                "classifier weight equal to 0 is not supported for CAIF Sampling"
            )

        top_next_token_log_probs = next_token_log_probs.topk(top_k_classifier, -1)
        classifier_input = torch.cat(
            [
                input_ids.unsqueeze(1).repeat(1, top_k_classifier, 1).flatten(0, 1),
                top_next_token_log_probs[1].view(-1).unsqueeze(-1),
            ],
            -1,
        )
        classifier_input = [
            self.lm_tokenizer.decode(sequence, skip_special_tokens=True)
            for sequence in classifier_input
        ]

        if self.invert_cls_probs:
            classifier_log_probs = torch.log(
                1 - self.get_classifier_probs(
                    classifier_input, caif_tokens_num=caif_tokens_num
                ).view(-1, top_k_classifier)
            )
        else:
            classifier_log_probs = self.get_classifier_log_probs(
                classifier_input, caif_tokens_num=caif_tokens_num, target_cls_id=target_cls_id,
            ).view(-1, top_k_classifier)

        next_token_probs = torch.exp(
            (top_next_token_log_probs[0] + classifier_weight * classifier_log_probs)
            / temperature
        )
        return next_token_probs, top_next_token_log_probs[1]

    def get_classifier_log_probs(self, input, caif_tokens_num=None, target_cls_id: int = 0):
        input_ids = self.classifier_tokenizer(
            input, padding=True, return_tensors="pt"
        ).to(self.device)
        if caif_tokens_num is not None:
            input_ids["input_ids"] = input_ids["input_ids"][:, -caif_tokens_num:]
            if "attention_mask" in input_ids.keys():
                input_ids["attention_mask"] = input_ids["attention_mask"][:, -caif_tokens_num:]
            if "token_type_ids" in input_ids.keys():
                input_ids["token_type_ids"] = input_ids["token_type_ids"][:, -caif_tokens_num:]
        logits = self.classifier_model(**input_ids).logits[:, target_cls_id].squeeze(-1)
        return torch.log(torch.sigmoid(logits))

    def get_classifier_probs(self, input, caif_tokens_num=None):
        input_ids = self.classifier_tokenizer(
            input, padding=True, return_tensors="pt"
        ).to(self.device)
        if caif_tokens_num is not None:
            input_ids["input_ids"] = input_ids["input_ids"][-caif_tokens_num:]
            if "attention_mask" in input_ids.keys():
                input_ids["attention_mask"] = input_ids["attention_mask"][-caif_tokens_num:]
        logits = self.classifier_model(**input_ids).logits[:, 0].squeeze(-1)
        return torch.sigmoid(logits)